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Abstract  

The dangers and difficulties that occur during ground-based studies of mangrove forests present an opportunity 
to develop cheap, accurate, and easy-to-use remote sensing methods. In this study, an Unmanned Aerial Vehicle (UAV) 
uses Very High Resolution (VHR) imagery to determine the carbon emissions stored as Above-Ground Biomass (AGB) 
in a mangrove forest in Klong Khon, Thailand. Four 100 m2 plots were used to develop a model that uses tree height and 
crown area to estimate Diameter at Brest Height (DBH) (Deviance = 76.0%). The UAV uses Structure from Motion (SfM) 
to determine mangrove height and crown area to then model DBH. Two Variable Window Filtering (VWF) algorithms 
were applied to UAV imagery to detect treetops and crown delineation. Power regression and lower limit VWF models 
were developed using the relationship between ground measured tree height and crown diameter. Ground- and UAV-based 
dendrometric parameters were compared with ground-based measurements to determine their accuracy. 
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1.  Introduction 

The warming of the globe has led to increasing interest in the world’s carbon stocks (Asner, 2009; 
Dangal et al., 2017; Smith et al., 2019). Mangroves, salt marshes, and seagrasses are all important ecosystems 
that are defined as “blue carbon.” Blue carbon ecosystems sequester more carbon than terrestrial forests and 
have been reported to lock carbon away for millennia (McKee et al., 2007; Mcleod et al., 2011). The carbon 
sequestered in these environments is divided into living or dead Above-Ground Biomass (AGB) and Below-
Ground Biomass (BGB), as well as carbon stored within the soil (Howard et al., 2014). Methods for 
determining AGB are well established, cost-effective, and easier to carry out than methods for surveying 
BGB (Ravindranath and Ostwald, 2008). Mangroves store more carbon in their AGB than salt marshes or 
seagrasses (Bulmer et al., 2020), and have been widely researched as a consequence (Mitra et al., 2011; Ray 
et al., 2011; Van Vinh et al., 2019). 

The ability of mangroves to effectively sequester carbon means that that they are well recognized 
amongst international initiatives as a mechanism to alleviate the stress caused by climate change. These 
include the United Nations Framework Convention on Climate Change (UNFCCC) Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) scheme and the 2013 Coastal Wetlands Supplement to the 
2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas 
Inventories (Hiraishi et al., 2014). There are also numerous carbon financing schemes dispersed around the 
globe. Mikoko Pamoja and the Blue Ventures Organisation both promote sustainable development whilst 
discouraging mangrove degradation and deforestation (Jones et al., 2016; Wylie et al., 2016). These schemes 
lend themselves to accurate carbon stock estimations as this improves carbon credit trading as well as 
optimizing management (Cairns and Lasserre, 2004). A caveat to many mangrove ecosystem studies is that 
forests exhibit spatial heterogeneity as well as variety between sites (Thompson et al., 2014). As a result, new 
allometric equations need to be developed for each mangrove study site (Van Vinh et al., 2019). 
Unfortunately, this means that many carbon storage estimates covering large areas are inaccurate (Ouyang 
and Lee, 2020). 

Mangrove carbon stock estimations have traditionally been carried out using ground-based 
measurements (Ray et al., 2011; Alongi et al., 2016; Bulmer et al., 2016). These measurements catalog 
dendrometric parameters such as tree height, crown area, and diameter at breast height (DBH) (Owers et al., 
2018a). These parameters can be used to determine AGB, which can then be converted into the equivalent 
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carbon emissions (CO2). For this to be possible, extensive measurements need to be made across a large study 
site to allow for an accurate representation of the forest (Kauffman and Donato, 2012), which presents a 
number of problems due to the difficulty of studying mangrove forests. The remoteness and density of 
mangrove forests make them difficult to access with fieldwork being expensive, time-consuming, and 
dangerous (Friess, 2016). 

Remote sensing as a method to estimate carbon in mangroves has been increasingly used as 
technology has advanced and practices have been refined (Fatoyinbo and Simard, 2013; Wicaksono, 2017; 
Hickey et al., 2018). Passive methods of remote sensing (Landsat) produce data that can estimate carbon 
stocks across large areas (Aslan et al., 2016). However, the coarse-scale of these datasets means that spatial 
heterogeneity is difficult to detect (Owers et al., 2016). More detailed active remote sensing methods have 
been utilized such as very high resolution (VHR) imagery and terrestrial laser scanning (TLS), which both 
allow for detailed sub-meter measurements (Neukermans et al., 2008; Owers et al., 2018b). The greater 
resolution obtained from these methods allows for more accurate site-specific carbon stock estimations 
(Komiyama et al., 2005). While these datasets are useful, they are not easily accessible to the relevant 
communities as mangroves mostly occur in developing countries (Osland et al., 2017). The need for a remote 
sensing method that is cheap, accessible, easy to deploy, and can be used to collect VHR data to study 
mangroves is evident. These issues look to be solved by the increasing use of Unmanned Aerial Vehicles 
(UAVs) in the scientific literature (Lin et al., 2010; Turner et al., 2016). The highly detailed and comparatively 
cheap site-specific data collected by UAVs means that they have been successfully used in terrain modeling, 
agriculture, and studying dendrometric parameters (Gómez-Candón et al., 2014; Gonçalves and Henriques, 
2015; Torresan et al., 2017). 

In this study, a UAV is used to create a model that can determine the dendrometric parameters within 
a mangrove forest located in the Upper Thai Gulf, Thailand. Ground-based measurements were compared 
with UAV-based measurements to assess the comparability of dendrometric parameters, which will allow 
carbon stock estimates to be developed for the above-ground carbon emissions of the forest. 

 
2.  Objectives 

1) To develop a geospatial VWF model to got the Mangrove forest crown diameter and canopy size 
2) To calculate the above-ground carbon stock of mangrove forests 
3) To compare the geospatial VWF method with the ground measurement method 

 
3.  Materials and Methods 
3.1 Study site 

The study site is located along the North-West coast of the Upper Thai Gulf in Klong Khon’s 
mangrove forest in Samut Songkram (13°19'N, 99°58'E) (Figure 1). The forest is dominated by Avicennia 
officinalis (91%), but Rhizophora apiculata (6%) and A. alba (3%) are also present. Man-made canals border 
the study site, which increases the influx of nutrients to the forest during tidal inundation, resulting in highly 
productive conditions (Ewel et al., 1998). The height and density of Avicennia canopies mean that very few 
understory plants are able to grow (Kitamura et al., 1997). To determine the dendrometric parameters of the 
mangroves present at Klong Khon, ground-based measurements were taken of all trees within four 10 x 10 
m plots (400 m2). 
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Figure 1 A world map shows the location of the Upper Thai Gulf. The location of Klong Khon is depicted by the black 
dot (left) and the area captured within the UAV imagery (right) 

 
3.2 Ground-based measurements 

The four plots were taken along a transect between the landward and seaward sides of the forest 
(May 7th, 2019). The first plot was drawn out at the start of the transect and the remaining three plots were 
taken at random intervals. The dendrometric parameters recorded for each tree include the height that was 
measured using a smartphone app (Smart Measure), the stem diameter at breast height (DBH) (1.3 m), and 
the crown diameter (Kauffman and Donato, 2012). The crown area of each tree was determined using the 
equation for calculating the area of an oval (Equation A1). Any trees with a height that did not surpass 1.3 m 
were not recorded and any trees with a split stem below 1.3 m were recorded as separate trees (Fu and Wu, 
2011). 

 
3.3 Data processing of Ground-based measurements 

Tree height, crown area, and diameter at breast height (DBH) were all transformed using the natural 
logarithm and normally distributed. The use of all 32 trees in the four plots allowed accurate dendrometric 
relationships to be determined (Kauffman and Donato, 2012). Tree height and crown area were both 
significantly positively correlated with DBH (|r| = 0.727, p < 0.01; |r| = 0.790, p < 0.01, respectively (df = 
30)). General linear models (GLMs) were created to predict DBH using tree height and crown area. The three 
models were evaluated using model statistics (Deviance (%), AIC, and Variance Inflation Factors [VIFs]) to 
determine, which was the most powerful model at predicting DBH. The Root Mean Square Error (RMSE) 
was used to determine the accuracy of modeled DBH values. Analyses carried out and models created were 
done so in R Statistical Software (v 3.6.2; http://www.r-project.org/). 
 
3.4 UAV data collection and development 

The UAV used in the study was a DJI Phantom 4 pro with a 1-inch 20MP sensor and a DJI Mavic 
Air mounted with a 12MP sensor. A flight plan was developed using the PIX4D mapper photogrammetry 
software to ensure uniform coverage to the study site. The UAV traveled at the middle-speed setting and 
varied in height between 50-70 meters. Images were taken with the camera at a 90° angle with an 80% overlap 
of images and a resolution of 5-7 cm/pixel, which allows the study site’s structure to be recreated using 
Structure from Motion (SfM). In total, 53 images were captured and uploaded to Pix4D mapper (v4.5.6; 
https://www.pix4d.com/). The software identifies key points in overlapping images and ties them together. A 
dense 3D point cloud was generated with a mean density of 165 points/m3 (Figure A1). The point cloud was 
edited in CloudCompare (v2.6.2; http://www.danielgm.net/cc/release/) where unwanted noise and anomalous 
points were removed. 
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3.5 UAV data analysis 
Point cloud data manipulation was done in R using the lidR package: v3.0.4 (Roussel et al., 2018) 

to a resolution of 5 cm/pixel. A cloth simulation was used on a reversed point cloud to create a digital terrain 
model (DTM) (Zhang et al., 2016). The height of the canopy was then normalized by using a k-nearest 
neighbor approach with an inverse distance weighting (KNNIDW). A local maximum filter uses an algorithm 
to create a diameter (window) around each point within the point cloud. The highest points within each 
window are then defined as treetops (Wang et al., 2004). The diameter of the filter’s window is critical for 
correctly determining the treetops of the canopy. Variable Window Filtering (VWF) uses tree height to assign 
a window size to each point for accurate tree segmentation. Using the principle that as trees get taller their 
crowns get larger, a VWF algorithm can be created. VWF has been used successfully to delineate trees in 
mangrove forests (Wannasiri et al, 2013; Navarro et al., 2020). In this study, two VWF models were 
developed and their accuracy was compared with ground measurements. The first of these functions uses the 
best fitting regression model, which relates tree height to crown diameter (Popescu and Wynne, 2004). The 
power regression VWF model was the strongest (R2 = 0.302) and was used as the VWF algorithm (Figure 
2a). Since this regression model explained little variance (Hair et al., 2011), it suggests that in this forest, tree 
height does not dictate crown diameter. To create a robust VWF algorithm for these conditions, a ‘lower 
limit’ function was created that allows the greatest window size to be created whilst including the parameters 
of all ground-based measurements (Figure 2b). While the lower limit VWF model will falsely identify 
treetops, it is far less likely to miss treetops than the regression model. 

Table 1 The type of regression used to determine the relationship between tree height and crown diameter. The equation 
and R2 values are displayed. The power regression was used as it had the greatest R2 value 

 
Once the VWF models have assigned treetops to the canopy, the crowns can then be grown out using 

a decision tree-based model (Dalponte and Coomes, 2016). Tree height and crown area were then determined 
for each tree in ArcGIS Pro (V.2.3.3). These values were used to predict the DBH of each tree before 
determining AGB (Komiyama et al., 1987) (Equation 1). The reported carbon content of mangrove trees 
varies between a factor of 0.45-0.50 (Twilley et al., 1992; Kauffman and Donato, 2012). This study used a 
carbon conversion rate of 0.475 before calculating the equivalent CO2 emissions (Hamilton and Friess, 2018). 
Standardized area metrics were calculated by removing the canal from the UAV imagery so that AGB and 
CO2 emissions represent values of continuous mangrove forest. 
 
3.6 Statistical analysis 

A Shapiro-Wilk normality test was used on tree height, crown area, DBH, and individual tree AGB. 
Since the four variables were non-normally distributed (p < 0.05), Wilcoxon Rank-Sum tests were carried out 
on all variables to assess if ground-based medians significantly differed from the two VWF models (Navarro 
et al., 2020). 
 

Regression Equation R2 

Exponential Crown Diameter = 3.3193e0.042(Tree Height) 0.293 
Linear Crown Diameter = 0.2238(Tree Height) + 3.3498 0.253 
Logarithmic Crown Diameter = 2.3887ln(Tree Height) + 0.4356 0.257 
Power* Crown Diameter = 1.9087(Tree Height)0.4513 0.302 
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Figure 2 The power regression VWF algorithm (a) and the lower limit VWF algorithm (b)  

are depicted by white dots at 0.5 m intervals 
  

Table 2 The equations for calculating above-ground biomass in mangroves forest (equation 1). 
Tree Stem (kg) = 0.05466(D2H)0.945  
Tree Branch (kg) = 0.01579(D2H)0.9124 Equation 1 
Tree Leaves (kg) = 0.06780(D2H)0.5806 
Tree Mass (kg) = Stem + Branch + Leaves  
D = Diameter at Breast Height, H = (Tree) Height  

 
  



RSU International Research Conference 2021 
https://rsucon.rsu.ac.th/proceedings        30 APRIL 2021 
 

[704] 
 

Proceedings of RSU International Research Conference (2021) 
Published online: Copyright © 2016-2021 Rangsit University 

4.  Results and Discussion 
4.1 Results 

Tree height and crown area were significantly positively correlated with DBH (|r| = 0.727, p < 0.01; 
|r| = 0.790, p < 0.01, respectively (df = 30)) (Figure 3). DBH was most accurately predicted when tree height 
and crown area were used in the same GLM (Table 3). The tree height and crown area model explained 76.0% 
of the deviance as well as having the lowest AICc value (= 21.5) and VIFs < 2 (Zuur et al., 2010). The 
accuracy of this model is greater than either of the other two models as they both exhibit a ΔAIC > 7 (Burnham 
et al., 2011) (Table 4). Ground-measured DBH values were compared with modeled DBH values and an 
RMSE of 6.16 cm was calculated. 

 

 
Figure 3 a) The relationship between ground measured ln(Tree Height) and ln(DBH) and b) the relationship 

between ground measured ln(Crown Area) and ln(DBH) 
 
 
 



RSU International Research Conference 2021 
https://rsucon.rsu.ac.th/proceedings        30 APRIL 2021 
 

[705] 
 

Proceedings of RSU International Research Conference (2021) 
Published online: Copyright © 2016-2021 Rangsit University 

Table 3 The three GLMs created using ground measured Tree Height and Crown Area along with their equation, 
Deviance (%), AICc, and ΔAIC. The strongest model used Tree Height and Crown Area. 

 
The dendrometric parameters measured via ground measurements and both VWF models are 

summarized below in Table 4. The canopy cover of the site was 94.4%. 
 

Table 4 Ground-based measurements and the VWF algorithms summary statistics for tree height, crown area, and DBH 

 
 Ground- and UAV-based measurements estimated similar minimum tree heights (~3 m). The two 
VWF models detected a maximum tree height of 26.6 m, which was greater than ground measurements (23.2 
m). The median ground measured tree height significantly differed from the median tree heights of the VWF 
models (Wilcoxon Rank-Sum test, both p-values < 0.01). The greater tree height median measured by both 
VWF models suggests that the average tree in the forest has a greater height than what was measured through 
ground surveying. 

The lower limit VWF model detected a range in crown area between 2.16 m2 and 117.3 m2 as well 
as a median crown area of 24.8 m2. While ground-based measurements had slightly larger minimum and 
maximum crown areas (7.73 – 129.4 m2), the median did not significantly differ (29.3 m2, Wilcoxon Rank-
Sum test, p = 0.30). The power regression VWF model had a similar minimum crown area (7.58 m2) to the 
ground-based measurements, but it measured a much larger maximum crown area (240.5 m2). In addition, 
the power regression VWF model measured a median crown area of 70.8 m2, which did significantly differ 
from the ground measured crown area median (Wilcoxon Rank-Sum test, p < 0.01). 

The median AGB per tree from the lower limit VWF model (183.1 kg) did not significantly differ 
from the median ground measured AGB per tree (141.4 kg, Wilcoxon Rank-Sum test, p = 0.12). The median 
AGB per tree for the power regression VWF model (578.1 kg) and ground-based measurements significantly 
differed (Wilcoxon Rank-Sum, p < 0.01). 

The number of tree stems, AGB, and CO2 emissions were standardized to a per hectare metric for 
comparison between ground- and UAV-based measurements as well as wider literature (Table 5). Ground-
based measurements extrapolated a tree stem density of 800 ha-1, which is far larger than the UAV-derived 
tree stem densities. The lower limit VWF model estimated a tree stem density of 367 ha-1  whereas the power 

Model Variables Equation Deviance (%) AICc ΔAIC 
Tree Height and 
Crown Area 

EXP(0.47377ln(Tree Height) + 0.40817ln(Crown 
Area) + 0.40345) 

76.0 21.5 0.0 

Tree Height EXP(0.7962ln(Tree Height) + 1.0616) 52.9 33.3 11.8 
Crown Area EXP(0.57153ln(Crown Area) + 0.89935) 62.4 40.5 19.0 

Method Height (m) Crown Area (m2) DBH 
(cm) 

Min Median Max Min Median Max Min Median Max 

 
In-situ 

 
3.00 

 
7.45 

 
23.2 

 
7.73 

 
29.3 

 
129.4 

 
6.00 

 
18.0 

 
50.0 

Lower 
limit 
VWF 

 
2.84 

 
12.6* 

 
26.6 

 
2.16 

 
24.8 

 
117.3 

 
4.13 

 
18.2 

 
42.2 

Power 
Regression 

VWF 

 
2.70 

 
15.4* 

 
26.6 

 
7.58 

 
70.8* 

 
240.5 

 
6.15 

 
30.9* 

 
60.5 
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regression VWF model estimated a tree stem density of 143 ha-1. Tree stem density observed by ground 
measurements was a factor of 2.17x denser than the lower limit VWF model and 5.59x denser than the power 
regression VWF model. 

Ground-based measurements suggest that the AGB of the mangrove forest is 247.3 t ha-1, which is 
greater than the lower limit VWF model by a factor of 2.46 (100.5 t ha-1) and greater than the power regression 
VWF model by a factor of 2.57 (96.1 t ha-1). Despite varying dendrometric parameters and tree stem densities 
presented by the two VWF models, the AGB per hectare values concurs with each other. The CO2 emissions 
stored as AGB according to ground-based measurements are 430.6 (t ha-1 ) as opposed to the lower limit and 
power regression VWF models that report CO2 storage of 175.0 and 167.4 t ha-1, respectively. 

 
Table 5 Standardised area metrics for ground-based measurements and the two VWF models. Variables include the 
number of tree stems, Above-Ground Biomass (AGB), and CO2 emissions 

 
4.2 Discussion 

Tree height and crown area were significantly correlated with DBH (Yao et al., 2012). The 
relationship exhibited a strong positive correlation for both tree height (|r| = 0.727, p < 0.01) and crown area 
(|r| = 0.790, p < 0.01). The best model included crown area and tree height (AICc = 21.5 and VIFs < 2) (Table 
3). This GLM explained 76.0% of the deviance, which suggests that with accurate extraction of tree height 
and crown area from UAV data, DBH can be modeled effectively. The findings of this study concur with the 
findings of Hirata et al., (2014) who also used crown area and tree height to determine allometric 
relationships. 

All methods used in this study were able to detect the smallest trees within the study site. Caveats 
of previous mangrove studies that use VHR UAV imagery are that trees below the canopy layer can be 
omitted from analysis (Navarro et al., 2020). However, the dense structure of Avicennia-dominated forests 
means that there are few trees that reside in the understory (Kitamura et al., 1997). The two VWF models 
used to analyze UAV data detected a greater maximum tree height than ground-based measurements. As 
maximum tree height was the same for both VWF models (26.6 m) and only marginally greater than ground 
measured maximum tree height (23.2 m), it is likely that this discrepancy can be explained by natural variation 
and tree age (Hickey et al., 2018). The median tree height for both the lower limit (12.6 m) and power 
regression VWF model (15.4 m) was significantly higher than the median tree height from ground-based 
measurements (7.45 m, Wilcoxon Rank-Sum, p < 0.01). Current software may be limited in determining the 
height of older, taller, oval/spherical-shaped trees as local maxima can be more difficult to distinguish 
(Panagiotidis et al., 2017). In addition, high canopy cover (94.4%) (Kaartinen et al., 2012) can lead to 
difficulty in determining the digital terrain model (DTM) as little ground was exposed for cloth simulation 
(Wannasiri et al., 2013). Without accurate DTM generation, tree normalization may not reflect true tree 
heights. Unfortunately, the absence of ground control points in this study means the DTM vertical error could 
not be calculated (Navarro et al., 2020). Tree height measurements have been accurately reported using VHR 
UAV imagery. Jones et al., (2020) found a near-perfect regression between ground and UAV measured tree 
height (R2 = 0.98). As a result, it is possible that overestimation of tree height may be due to human error and 
limitations of ground surveying methods. Trees >2 m may have their heights underestimated as surveyors 
cannot accurately determine the highest point of the crown (Larjavaara and Muller-Landau, 2013). This error 
increases with greater canopy cover as well as increased tree height (Yin and Wang, 2019). The higher median 

Method Number of tree stems (ha-1) AGB (t ha-1) CO2 emissions (t 
ha-1) 

In-situ 800 247.3 430.6 
Lower limit 

VWF 367 100.5 175.0 

Power 
Regression VWF 143 96.1 167.4 
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tree height may be a combination of inaccuracies from ground-based measurements due to difficulty in 
discerning the highest point of the tree as well as difficulty in determining the DTM. 

The power regression VWF model had a significantly larger crown area median (70.8 m2) than 
ground-based measurements (29.3 m2, Wilcoxon Rank-Sum test, p < 0.01), which is partially due to the weak 
relationship between tree height and crown diameter (R2 = 0.302) (Falkowski et al., 2006). The poor R2 value 
in this study is partly due to all mangrove species being included in the model as the UAV models do not 
implement species identification techniques (Yin and Wang, 2019). However, this is unlikely to have had a 
significant impact as Avicennia species make up 94% of the trees. The power regression VWF model’s largest 
caveat is due to ground surveying methods. As already discussed, differences between tree height estimations 
are likely due to limitations of ground-based methods. With VWF window sizes being determined by tree 
height, inaccurate ground-based measurements will affect the model’s ability to successfully delineate 
crowns. Underestimation of ground measured tree heights means that datapoints undergo a positive 
translation up the x-axis (tree height) to achieve their true height (Figure A2a), meaning that the power 
regression VWF model assigns a greater window size to treetops. As a result of under-segmentation, there 
are fewer crowns identified with each crown occupying a larger area (Figure A3). Tree height underestimation 
increases with taller trees, which leads to proportionately smaller window sizes for the tallest trees (Yin and 
Wang, 2019), which explains why the minimum tree height between the power regression VWF model and 
ground-based measurements were comparable (7.58 and 7.73 m2, respectively), but maximum crown areas 
were not (240.5 and 129.4 m2, respectively). The minimum and maximum crown areas for the lower limit 
VWF model were comparable to the crown areas observed in ground-based studies (24.8-117.3 and 29.3-
129.4 m2, respectively). Furthermore, the median crown areas of the two methods did not significantly differ 
(Wilcoxon Rank-Sum test, p = 0.30). The more conservative approach used by the lower limit VWF model 
means that even when ground-measured datapoints are positively translated up the 𝑥𝑥-axis (tree height), the 
window size is not compromised to the same extent as the power regression VWF model (Figure A2b). While 
this method does not compromise window size, the nature of the lower limit VWF model means that all 
windows created are smaller than the ground measured crown diameters. As a result, more false-positive 
treetops are identified (Figure A4). All crown area summary statistics for the lower limit VWF model are less 
than ground-based measurements, which suggests over-segmentation of crowns and increased number of tree 
stems (Table 5). 

Unfortunately, without extensive ground surveying, it is impossible to derive the commission error 
(Wannasiri et al., 2013). Nevertheless, comparability of minimum, median, and maximum crown areas 
between the lower limit VWF model and ground-based measurements suggests that false positives have not 
significantly impacted results. 

The VWF models both measured tree height medians that were significantly greater than the median 
ground-measured tree height (Wilcoxon Rank-Sum test, p < 0.01). It is hypothesized that ground-measured 
tree heights were underestimated due to limitations of ground surveying methods when canopy conditions 
are dense and tall. The power regression VWF model did not accurately predict crown area or DBH 
(Wilcoxon Rank-Sum test, p < 0.01 for both variables). Poor estimates of dendrometric parameters from the 
power regression VWF model are due to a poor relationship between tree height and crown diameter (R2 = 
0.302) as well as dense canopy cover (94.4%) decreasing the ability for crown delineation (Wannasiri, et al., 
2013). The minimum and maximum DBH modeled by the lower limit VWF model were smaller than the 
DBH of ground-based measurements, but they were still comparable. Furthermore, the median DBH from 
ground-based measurements and the lower limit VWF model do not significantly differ (Wilcoxon Rank-
Sum, p = 0.629) despite tree height medians significantly differing (Wilcoxon Rank-Sum, p < 0.01). It 
suggests that crown area is more significant than tree height in determining DBH, which is a result of the 
lower limit VWF model estimating a greater range for the crown area than for tree height (2.16-117.3 m2 and 
2.84-26.6 m, respectively) despite similar equation coefficients (Table 3). Consequently, similar DBH 
medians are reported by the lower limit VWF model and ground-based measurements. 

Ground-based measurements estimated tree stem densities of 800 ha-1, which was greater than the 
lower limit VWF model (367 ha-1) or the power regression VWF model (143 ha-1) (Table 5). Extrapolated 
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and interpolated stem densities per hectare can widely vary in their estimates due to the spatial heterogeneity 
of mangrove forests (Owers et al., 2016). As larger plot sizes cover more land, they are better able to capture 
this variance. Proisy et al., (2007) carried out ground surveys of varying plot sizes that estimated tree stem 
densities between 53-15,100 ha-1. Generally, interpolation of larger plots found lower tree stem density, and 
extrapolation of smaller plots found greater tree stem density. In this study, extrapolation of tree stem density 
from ground-based measurements may be an overestimate as the plots only represent a 400 m2 area of forest 
whereas the UAV study site is approximately 37,600 m2. While mangrove forests with greater tree stem 
density have been reported, these forests have smaller, more densely packed trees (Wannasiri et al., 2013; 
Faridah-Hanum et al., 2014). 

It was also estimated from ground-based measurements that the AGB of Klong Khon averaged 247.3 
t ha-1. In contrast, the lower limit VWF model determined an AGB of 100.5 t ha-1 and the power regression 
VWF model determined an AGB of 96.1 t ha-1. The power regression VWF model under-segmented the 
canopy, which resulted in overestimations of dendrometric parameters. While the power regression VWF 
model only detected 39.0% of the lower limit VWF model treetops, each tree had a far greater AGB, which 
allowed for comparable AGB estimates per hectare between the two models. The AGB per hectare in this 
study was greater than what has been reported in other Avicennia-dominated forests (Ray et al., 2011), which 
is most notably due to larger trees found in this study than other Avicennia forests (Duke, 1991). 

The number of tree stems per hectare estimated by the lower limit VWF model was less than ground-
based measurements by a factor of 2.17 (Table 5). The lower limit VWF model has overestimated the number 
of tree stems per hectare, which means that ground-based measurements are greater by a factor of >2.17. The 
AGB per hectare of the lower limit VWF model was less than ground-based measurements by a factor of 
2.46. Standardized ground-based measurements are possibly not representative of the mangrove forests’ 
wider heterogeneity. This hypothesis is posed because the lower limit VWF model’s number of stems and 
AGB per hectare is less than ground measurements by comparable factors (>2.17 – 2.46). The similarity of 
these factors means that ground-based measurements have overestimated standardized per hectare metrics. It 
is further supported as the median individual tree AGB does not significantly differ between the lower limit 
VWF model and ground-based measurements (Wilcoxon Rank-Sum, p < 0.01). It can therefore be concluded 
that standardized ground-based measurements are not representative of the wider mangrove forest and the 
lower limit VWF model estimated AGB should be used (100.5 t ha-1). The AGB can then be converted into 
CO2 emissions, which estimates 175.0 t ha-1. A final caveat is that an allometric equation was not developed 
for this study (Equation 1). While the equation used was accurately developed from the mangroves of the 
surrounding area (Komiyama et al., 1987), it is possible that due to forest spatial heterogeneity it does not 
represent the precise AGB of the study area (Owers et al., 2016). A different allometric equation may result 
in a very different estimate for CO2 per hectare as studies have shown that the use of tree height can impede 
AGB estimates (Komiyama et al., 2005), which is because DBH can vary greatly once the maximum species-
specific tree height has been reached (Soares and Schaeffer-Novelli, 2005). 

 
5.  Conclusion 

While a VWF algorithm following regression is favorable when determining window size, this study 
shows that when regression is weak (R2 = 0.302), a lower limit VWF algorithm can be used to successfully 
derive the dendrometric parameters of Klong Khon’s mangrove forest. Tree heights were the only 
dendrometric parameter where medians significantly differed between ground-based measurements and the 
lower limit VWF model. Despite that, crown area and DBH medians did not significantly differ between 
ground measurements and the lower limit VWF model. The small number of ground surveyed plots means 
that forest spatial heterogeneity may not have been captured. Consequently, tree height and derived DBH 
values from the lower limit VWF were used to determine AGB per hectare within the study site. The amount 
of CO2 currently stored as AGB within Klong Khon’s mangroves is 175.0 t ha-1. To discern the true accuracy 
of UAV measured tree height, comprehensive research needs to be conducted to establish a tree height 
estimation error between UAV- and ground-based measurements. Establishing this error index under varying 
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canopy cover and tree height conditions will strengthen the ability for VHR UAV imagery to measure tree 
height and determine AGB. 
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