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________________________________________________________________________________________________ 
Abstract 

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder that causes progressive cyst 
development in the kidneys. This enlarges the kidneys, disturbing glomerular filtration, ultimately producing kidney 
failure. The process of cyst growth leads to severely atypical morphology. Combined with the presence of extrarenal 
cysts, this makes identifying the kidneys from medical images challenging; requiring the expertise of trained radiologists. 
This is time-consuming and suffers from inter- and intra-observer variability; hence our objective is to automate the 
segmentation of kidneys from ADPKD patient scans. A total of 135 T2-weighted MRI scans were obtained from 55 
patients aged 16 to 87 years (mean = 55.94 ± 13.39 SD), weighing 35 to 90 kg (59.39 ± 11.16), with a sex distribution of 
29:106 (male: female), and total kidney volume (TKV) for left or right kidneys ranging from 83.77 to 3,376.78 ml (633.85 
± 520.14). These were all annotated with kidney labels and split into training (n = 120) and test (n = 15) sets for supervised 
learning with a 3D fully-convolutional network model (i.e. "3D-Unet"/"V-net"). Accuracy and dice similarity coefficient 
(DSC) were used to evaluate segmentation performance, and coefficient of determination (R2) was used to compare 
automatically-derived TKV with clinical reference measurements. The results of nine-fold cross validation demonstrated 
test set accuracy of 97.72 ± 0.8 %, DSC of 0.787 ± 0.060. Comparison of TKV measurements showed R2 of 0.787 after 
removing ten edge cases. These results are encouraging and indicate the potential of this technology, although further 
development and careful evaluation are needed before clinical adoption. 

 
Keywords: Segmentation, Deep Learning, Polycystic Kidneys, Fully Convolutional Network, Medical Image Processing, 
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_______________________________________________________________________________________________ 
 
1.  Introduction 

Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by 
the formation of multiple renal cysts, which can also be accompanied by extrarenal cysts, mainly inside of 
the liver or other peritoneal tissues ( Pei, 2006; Pirson, 2010; Torra et al. , 2008) .  Due to considerable 
heterogeneity in manifestation of ADPKD severity in families and between families, it is thought that a gene-
environment interaction contributes to the development of this disease ( Torres, Rossetti, & Harris, 2007) . 
With aging, patients typically exhibit increasing numbers of cysts that also tend to grow in size. The cyst load 
adds to the total kidney volume ( TKV) , stressing and deforming the renal parenchyma.  Enlargement and 
distortion of the kidneys eventually disrupts the physiological processes required for normal glomerular 
filtration (Grantham et al., 2006). In consequence, this can lead to end-stage renal disease, which can be fatal 
if kidney transplantation is not performed.  The chronic nature of ADPKD is rather stark for sufferers, and 
there are few effective treatments available.  Disease management generally involves trying to maintain a 
healthy lifestyle with recommended fluid intake, and having regular check- ups that involve performing a 
magnetic resonance imaging ( MRI)  or computed tomography ( CT)  scan to determine TKV ( Wong et al. , 
2018) .  Of these two modalities, for regular ( two or more times per year)  imaging MRI is preferable due to 
the increased health risks associated with exposure to radiation.  Medical imaging procedures are performed 
after which the radiologist must analyze each image to determine the boundary of kidney tissue. This process 
may be referred to as manual segmentation and is a standard practice in the management of ADPKD. 
Radiologists typically perform manual segmentation with the help of a digital drawing tool.  Currently, 
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although manual segmentation is the best available method for segmenting the kidneys, it has several 
drawbacks; it is time-consuming and suffers from inter- and intra-observer variability. The time of specialist 
healthcare professionals is precious, and routinely spending in performing laborious image analysis is 
inefficient.  Furthermore, variability between observers, or by the same observer under different conditions, 
is also undesirable.  An automatic computational approach to segmenting the kidneys could unburden 
clinicians from the tedious elements of this task.  High precision and repeatability are clearly required from 
any computational method that may be seriously considered for introduction to clinical practice.  Following 
kidney segmentation, TKV can be calculated, which is used to track disease progression (Alam et al., 2015). 

There have been researched efforts dedicated towards this problem since the turn of the century 
(Zöllner et al. , 2012) .  The development of computational methods for automatically segmenting polycystic 
kidneys may be classified separately into conventional algorithm-based and data-driven machine learning or 
deep- learning model- based approaches.  It has become widely recognized that deep- learning model- based 
methods using fully-convolutional network (FCN) architectures tend to produce better results. For example, 
using this approach, Sharma et al.  ( 2017)  achieved a DSC of 0. 86 with a total of 244 CT scans, which they 
deemed to be in agreement with clinical experts; meanwhile, Kline et al. (2017) managed to achieve a DSC 
of 0.96 with 2400 MRI scans of the kidneys. Anecdotally this exemplifies the relationship between the amount 
of available training data and performance for deep-learning approaches. Recently, segmentation accuracy of 
90 %  was reported based on a two- model classification- segmentation pipeline trained and tested with 526 
MR images from 18 patients (Brunetti et al. , 2019) .  Taken together, this prior work suggests that automatic 
segmentation of polycystic kidneys from MRI scans of ADPKD patients using FCN models is feasible with 
varying amounts of data. Differences in scan format and patient demography may limit the successful transfer 
of models trained on data from different distributions; thus we aim to develop a model for a specific clinic. 

The three-dimensional FCN architecture for medical volume segmentation was introduced relatively 
recently ( Çiçek, Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016; Milletari, Navab, & Ahmadi, 2016) . 
This model typically begins with an encoding path comprising multiple convolutional and pooling layers, 
typically discarding some portion of units at random to mitigate overfitting (Srivastava, Hinton, Krizhevsky, 
& Salakhutdinov, 2014) , and normalizing layer inputs to make the model more robust to learning rate and 
initialization parameters ( Ioffe & Szegedy, 2015) .  During the encoding part of the FCN, the model learns 
increasingly abstract information at the expense of spatial resolution.  The encoding structure feeds into a 
decoding section comprising the same number of up- sampling transposed convolutional layers, with " skip 
connections"  cascading equal resolution layers from the encoding path to preserve spatial information.  The 
model used in the present study is illustrated in Figure 1. Several variants of this FCN architecture have been 
proposed, some of which include recurrent and/or residual network topologies; although there is no consensus 
about what combination of layers results in a superior model, and typically model ensembles are found to 
produce the best overall performance (Heller et al., 2019; Isensee & Maier-Hein, 2019). 

This FCN architecture has been quite successful in a range of biomedical image segmentation 
problems (Guo, Guo, Li, & Gong, 2019; Ye, Wang, Zhang, & Wang, 2019; Zhang et al., 2019; Zhong et al., 
2018), and has become particularly prominent among submissions to Grand Challenges in Biomedical Image 
Analysis (https://grand-challenge.org/). Pertinent among these competitions is the kidney and kidney tumor 
segmentation challenge (KiTS19; Heller et al., 2019), in which the top eight scoring submissions employed 
variants of the 3D FCN architecture.  Albeit this competition used contrast- enhanced CT image data, the 
results are nevertheless encouraging for the prospects of developing computational methods for automatic 
kidney segmentation at comparable levels to expertly trained humans. At present, it appears as though the 3D 
FCN architecture has become the de facto standard method for biomedical volume segmentation.  As 
mentioned, this approach certainly has achieved a lot of acclaim for its performance in various articles and 
publicized challenges; although each new application with specific data requirements must be carefully 
validated because there are no guarantees that this approach will be equally successful in all applications. 
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2.  Objectives 
In this study, we aim to explore the application of a 3D FCN architecture for automatic segmentation 

of polycystic kidneys from MRI scans of ADPKD patients. It should be noted that this objective relates only 
to data in the format described in Section 3. 1, and strictly does not apply to different medical imaging 
modalities (e.g. CT), scanning machines, specific settings, or demographic groups; all of which may influence 
the performance of data-driven methodologies. 
 
3.  Materials and Methods 
3.1. Data 

The data used in this study consisted of coronal single-shot T2-weighted MRI scans (n = 135) from 
55 patients diagnosed with ADPKD who underwent kidney volume assessment between January 1, 2014, and 
September 24, 2019, at Ramathibodi Hospital, Bangkok, Thailand.  This cohort ranged in age from 16 to 87 
years (55.94 ± 13.39), in weight from 35 to 90 kg (59.39 ± 11.16), and sex ratio of 29:106 (male: female). 
Total kidney volume measurements were calculated from manual segmentations and ranged from 83. 77 to 
3,376.78 ml (633.85 ± 520.14). Kidney volume distributions are shown in Figure 1. Scan dimensions were 
square in the coronal plane with side length ranging from 384 to 672 pixels (501.33 ± 39.82) and pixel spacing 
from 0.586 to 0.804 mm (0.706 ± 0.030). The number of frames ranged from 26 to 44 (33.68 ± 4.33) with a 
constant frame spacing of 5 mm. These differences in the scan dimension reflect body size variability within 
the patient group. 

Binary masks corresponding to the kidneys were created manually to facilitate the supervised 
learning approach by providing labels for every voxel.  Imaging data were normalized to values between 0 
and 255.  Due to hardware limitations and resource requirements of the model, volume data were resized to 
16 x 64 x 64 ( frames x rows x columns) .  One hundred and twenty scans were used for model training and 
fifteen were used for testing; for nine- fold cross- validation different portions of data were extracted for 
training and testing.  Throughout this manuscript values are reported as mean ± standard deviation, unless 
otherwise stated. 

 
Figure 1  Distribution of kidney volume within the dataset. In total there were 270 kidneys from 135 patients. 

 
3.2. Model Architecture  

The 3D FCN model for volume segmentation was based on those previously mentioned ( Çiçek et 
al., 2016; Milletari et al., 2016). The encoding section included five levels, each with 3 x 3 x 3 convolutional 
layers followed by 2 x 2 x 2 max pooling with a stride of two. Every pooling layer of the encoding path was 
followed by batch normalization, and layers two and four were followed by 50%  dropout.  The decoding 
section of the model consisted of five levels concatenated with layers of equal size in the encoding section, 
combined with convolutional and up- sampling layers.  This combination of encoding and decoding sections 
accepted an input volume size of 16 x 64 x 64 and the output volume of the same size, as illustrated in Figure 
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2. Input and hidden layers used the rectified linear unit (ReLU) activation function, while the sigmoid function 
was applied at the output layer. 

The model was trained for 1000 iterations with adaptive momentum (Adam) optimization, an initial 
learning rate set as 1 x 10−4, β1 = 0.9, and β2 = 0.99. Weighted binary cross-entropy loss was incorporated to 
account for imbalanced classes, with class weights calculated using the training set.  Training data was 
augmented during this process by randomly flipping axes, shifting (up to 50 pixels left or right) and rotating 
( up to 45° clockwise or anticlockwise)  in the coronal plane, and adjusting pixel intensities ( up to 50 points 
brighter or darker), before resizing to comply with the model input size. 

 

 
Figure 2 Fully-convolutional network architecture. This diagram illustrates the "U-net" topology. Application of batch 

normalization (BN) and dropout (DO) are annotated below the relevant levels of the encoder section; data 
sizes at each level of resolution are denoted in parentheses; skip connections to concatenate layers are 
represented by dashed arrows. 

 
3.3. Evaluation 

Nine-fold cross validation was performed to evaluate the model over the whole dataset; in each fold 
test data was unseen by the model.  Segmentation performance was quantified using accuracy and Dice 
similarity coefficient ( DSC)  metrics.  These provided end- point assessments ( Table 2)  and longitudinal 
evaluations throughout the training process (Figure 3). Furthermore, to determine correspondences between 
TKV values derived from automatic segmentations and clinical reference measurements, coefficient of 
determination (R2), mean absolute error (MAE) and mean absolute percentage error (MAPE) were calculated. 
These evaluation metrics were calculated as shown in Table 1. 
 
Table 1 Evaluation metrics 

Metric Evaluation Formula 

Accuracy Segmentation 
𝑇𝑃 𝑇𝑁

𝑇𝑃 𝐹𝑃 𝑇𝑁 𝐹𝑁
 

DSC Segmentation 
2𝑇𝑃

2𝑇𝑃 𝐹𝑃 𝐹𝑁
 

R2 TKV 1
∑ 𝑅𝑒𝑓 𝐴𝑢𝑡𝑜

∑ 𝑅𝑒𝑓 𝑅𝑒𝑓
 

MAE TKV 
1
𝑛

|𝑅𝑒𝑓 𝐴𝑢𝑡𝑜 | 

MAPE TKV 
1
𝑛

𝑅𝑒𝑓 𝐴𝑢𝑡𝑜
𝑅𝑒𝑓

100% 

TP = true positive; FP = false positive; TN = true negative; FN = false negative; n = number of test cases; 𝐴𝑢𝑡𝑜  = TKV from auto-segmentation; 𝑅𝑒𝑓  = 

TKV reference measurement; 𝑅𝑒𝑓 = average from test case reference TKV measurements. 
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3.4. Tools 
 Software used in this study included Scikit- Learn 0. 20. 2, OpenCV 4. 0. 0. 21, Keras 2. 2. 4, and 
Tensorflow 1. 13. 1 for Python 3. 7. 2.  Hardware included an Intel i7- 9700 CPU with 32 GB RAM and an 
NVIDIA GeForce GTX 1070 8 GB graphical processing unit. 
 
3.5. Ethics 

This study was approved by the Ethics Committee on Human Rights Related to Research Involving 
Human Subjects of Ramathibodi Hospital. Anonymized data with no identifiable information was used. 
 
4.  Results and Discussion 

Accuracy and DSC from nine- fold cross- validation are reported in Table 2.  These equate to an 
overall test set accuracy of 97. 72 ± 0. 827 %  and DSC of 0. 787 ± 0. 060.  Total kidney volume for left and 
right kidneys were estimated based on these segmentations (Figure 3); however, it should be noted that FCN 
output did not differentiate between kidneys, and binary segmentation masks were split post- hoc depending 
on the position of respective centers of mass.  In six instances a single large kidney region was segmented, 
due to their large and abnormal anatomy, in which cases the total volume was halved to estimate left and right 
kidney volumes.  Two cases only segmented one kidney, and a further two cases detected no kidney at all. 
Analysis of TKV from the whole dataset shown in Figure 3a was evaluated to have R2 of 0. 617, MAE of 
187.5 ml, and MAPE of 36.71 %. After removing these ten edge cases (Figure 3b), the performance was re-
evaluated to be R2 of 0. 787, MAE of 147. 1 ml, and MAPE of 35. 34 % .  This suggests that there are 
improvements to be made in terms of segmentation splitting algorithm. 
 
Table 2 Segmentation performance evaluation 

k Test Set Accuracy Test Set DSC 
1 0.983 0.866 
2 0.960 0.824 
3 0.985 0.802 
4 0.983 0.683 
5 0.978 0.780 
6 0.985 0.843 
7 0.979 0.834 
8 0.966 0.698 
9 0.976 0.757 

 

 
Figure 3 Comparisons of kidney volumes from manual and automatic segmentations. a) Whole dataset. b) Ten 

anomalous cases have been removed. Reference volumes were derived from manual segmentations; estimated 
volumes were computed from automatic segmentations. 



RSU International Research Conference 2020 

https://rsucon.rsu.ac.th/proceedings            1 MAY 2020 
 

[48] 
 

Proceedings of RSU Internationl Research Conference (2020) 
Published online: Copyright © 2016-2020 Rangsit University 

The learning curves in figure 4 describe model performance throughout the training process. In terms 
of accuracy, the model exhibits low bias and variance.  However, in terms of DSC, model bias and variance 
are greater; DSC is a more stringent metric because it does not count true negative voxel classifications, hence 
it is generally considered to be more appropriate for evaluating minority class segmentations. Trajectories of 
the learning curves suggest that there is a need to improve generalizability; further developments shall seek 
to reduce the variance.  Approaches to improving this performance may potentially include obtaining more 
training data and modifying the FCN model design. 
 

 
Figure 4 Learning curves. a) Accuracy. b) Dice similarity coefficient. Traces show the average from nine-fold cross-

validation. 
 

In comparison with previously published attempts at using FCN methods for automatically 
segmenting ADPKD patient kidneys from medical images, this study used a modestly sized dataset; i.e. 135 
scans in the present study versus 244 (Sharma et al., 2017) and 2400 (Kline et al., 2017). These two previous 
studies reported DSCs of 0.86 and 0.96, respectively. The finding of 0.79 DSC from the present study may, 
therefore, reflect a lower amount of data used for model training.  Furthermore, these two prior studies 
segmented the kidneys from medical imaging scans on a per image basis, which would have provided orders 
of magnitude more training instances (e.g. 244 CT scans ≈ 25,000 CT images). In order to achieve comparable 
performance, we may continue to collect more ADPKD patient scans in the anticipation that more data will 
equate to a better model, which is typically the case with deep learning technology. 

Paradoxically, the seemingly reasonable performance of automatic segmentation (accuracy of 97.7 
%  and DSC of 0. 79)  does not translate directly into equivalently accurate TKV measurements ( R2 of 0.62 
and MAPE of 36.71 %). This may be due to a loss of resolution by resizing the data for the FCN input layer; 
i.e. down-sizing patient scans from, for example, 32 x 480 x 480 (frames x rows x columns) to 16 x 64 x 64. 
It is expected that training a larger model with an input size closer to the original data size will produce more 
accurate final segmentations and corresponding TKV estimates.  There are also issues regarding the kidney 
splitting algorithm used to separate large individual regions in a scan that needs to be addressed. 
 
5.  Conclusion 

In conclusion, 3D FCN technology can potentially achieve suitable levels of performance for clinical 
adoption; however, the current method should be further developed before considering deployment.  To 
improve precision we shall 1)  use more advanced hardware to develop a higher resolution model, 2)  collect 
more data on the basis that this will improve model generalization, and 3) experiment with different network 
architectures. We anticipate that this technology will be introduced to radiological practice in the foreseeable 
future. 
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