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Abstract  

Value at Risk (VaR) is one of the widely employed risk measures in quantitative risk management. Because 

of its readiness of use, both theoretical and practical researches have been extensively made so far. Here, in this paper, 

we are concerned with the estimation of VaR for the portfolio problem; the portfolio consists of two random variables. 

Our innovative point is that we do not necessarily assume the independence between random variables but the 

possibility of nonlinear relation. To analyze the nonlinear dependence, a copula function method is customarily used; as 

is well-known, copula provides a flexible tool for treating the possible nonlinear relation. We derive the determination 

formula of VaR analytically in the case of Archimedean copulas, which may be served as elementary machinery of 

computation. Empirical studies are also implemented for the problem of estimating VaR in stock indexes. The results 

show that our obtained formula works rather well.  
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1.  Introduction 

In our modern globally-connected financial systems, various kinds of crises, from small to a large 

extent, are frequently observed these days. To name a few, the subprime mortgage crisis in the USA around 

2008, the European debt crisis since late 2009, and many others. In order to manage these instabilities, 

financial institutions should monitor possible overall risks continuously, and therefore it is desirable to 

utilize certain characteristic quantity which represents the total risk involved.  

Value at Risk (VaR) is introduced in this respect. Because of its simplicity and readiness of use, 

VaR is now well recognized as one of the principal risk measures in financial risk management. A 

theoretical study, as well as various practical estimation methods, have been investigated, and much 

progress has been made so far. For further information and background materials of VaR, we refer, for 

instance, to Duffie and Pan (1997) and/or McNeil, Frey & Embrechts (2005) and the references therein. 

In this paper, we are concerned with the estimation of VaR for the portfolio problem. The portfolio 

we consider is formulated as the linear combination of two random variables. It is noted that VaR is 

commonly defined for a single random variable. An innovative point of our research is that these two 

random variables are not necessarily assumed to be independent, but they have a possible nonlinear 

relation. Although the assumption of independence is very stylized in financial analysis, it is believed that 

many phenomena show some dependence features.  

To deal with nonlinear dependence, a copula function method is customarily used; because of its 

flexibleness, copulas provide handy tools for the analysis. For background materials about copulas, we 

refer, for instance, to Joe (1997), Frees and Valdes (1998), Nelsen (2006) and the references therein. We 

also refer to the recent work of Yoshiba (2018) for another aspect of copulas.  

The rest of the paper is organized as follows. In Section 2, the objectives of our research are 

settled. Section 3 provides preliminary materials. We state our main result in Section 4, which followed by 

empirical studies in Section 5. Section 6 concludes.  
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2.  Objectives 

In order to develop a better procedure for estimating VaR, the objectives of our study are now 

settled as follows.  

 We establish a new analytical formula to evaluate VaR for the portfolio problem, in the case that 

nonlinear dependence is assumed to be described by Archimedean copula.  

 We implement empirical studies with real data of the S&P 500 and Jakarta Stock Exchange so that 

we compare the effectiveness of copula-based estimation with a standard method.  

              To be specific further, we briefly present our analytical result a little in details. Below, technical 

ingredients and background information will be explained in later sections.  

Let   and   denote random variables, whose joint distribution function  is represented by a 

copula  ; namely, 

 (   )   (       )   (  ( )   ( ))    

where   ( )   (   )  and    ( )   (   )  denote marginal distribution functions of   and    
respectively. We consider the portfolio represented by a random variable   of the form 

     (   )       (     )   

and its Value at Risk  

    ( )    
(  )( )     {  |    ( )           (     )    

Then, under the assumption that    is an Archimedean copula with generator   and the condition that    is 

continuous and strictly monotone for simplicity, we establish that     ( ) is evaluated as the solution of 

the equation, whose proof is given in Section 4.  
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(   ))    (
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We exhibit empirical studies on estimating VaR in Section 5, which follows our previous work 

Molina Barreto and Ishimura (2020). 

 

3.  Materials and Background Issues 

3.1 Value at Risk 

    We first recall the definition of Value at Risk (VaR) for completeness of our presentation.  

Let   be a random risk variable and denote by   ( )   (   ) its distribution function. VaR at 

the confidence level   (     ) is then simply defined by  

    ( )    
(  )( )     {  |    ( )      

Because of its simplicity and readiness for use, VaR now becomes a standard benchmark of risk factors. We 

mention that, however, VaR is defined for a single random variable; on the other hand, we here deal with 

VaR for the portfolio problem, which involves two random factors, and we note that the treatment in the 

case of the portfolio problem seems to be not so well investigated despite its importance in the study of risk 

management.  

3.2 Copula 

Next, we recall the definition of the copula in the case of the bivariate joint distribution.  

Definition. A function   defined on   
                 and valued in   is called a copula if the following 

conditions are fulfilled. 

(i) For every (   )      , 
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 (   )    (   )              (   )       (   )            

(ii) For every (     )      
 (       ) with       and      , 

 (     )     (     )     (     )    (     )      

The requirement (ii) is referred to as the 2-increasing condition. We also note that a copula is continuous by 

its definition. 

             The well-known result due to Sklar (1973), who employed the term “copula” almost for the first 

time, gives the basic property of copulas. We here recall Sklar’s theorem in bivariate case, for completeness 

of our presentation.  

Theorem. (Sklar’s theorem) Let   be a bivariate joint distribution function with marginal distribution 

functions   and  ; that is, 

   
   

 (   )   ( )  

    
   

 (   )   ( )    

Then there exists a copula, which is uniquely determined on Ran  × Ran , such that  

   (   )    ( ( )  ( ))   

 Conversely, if   is a copula and   and   are distribution functions, then the function   defined 

above is a bivariate joint distribution function with margins   and  . 

 

3.3 Archimedean copula 

 An important class of copulas is given by the so-called Archimedean copulas. We recall for 

completeness which is the Archimedean copulas. Let   be a convex function defined on   and valued in 

      such that   is strictly decreasing and verifies  ( )     . Let denote by      
 the pseudo-inverse of 

 ; that is, Dom      
        , Ran      

    , and  

      {
 (  )( )          (     ( )) 

                         ( ( )     )
. 

It is then possible to prove that the function   defined on   
 by 

 (   )        ( ( )     ( ))            

satisfies the properties (i)(ii) in Definition above, and thus   provides a copula. 

 Copulas of the form above are called Archimedean copulas and the function   is called a generator 

of the copula. The class of Archimedean copula gives a wide range of applications. For example, the 

generator  ( )      (    )  (   ) yields the copula  (   )    ((   )  (   )  

(   ) (   ) )
 

   This family of the copula is studied by Joe (See Joe (1997)). Other examples of 

Archimedean copulas include:  

 

Clayton copula:  

 ( )      (     )     (         )   {  ),        (   )   (   {           })
 

 

   

Gumbel copula: 
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 ( )   (    ) 
          (    )  (   )       (  (     ) 

  (     ) 
     )  

Ali-Mikhail-Haq copula:  

 ( )      
   (   )

 
         (       )         (   )  

  

   (   )(   )
   

Frank copula: 

 ( )       
      

     
         (    (    )  {  )         (   )   

 

 
   (  

(      )(      )

     
)   

 

There are many other Archimedean copulas. For more details, we refer to an excellent book by 

Nelsen (2006). 

 

4.  Results and Discussion 

Now we state our main observation in this article.  

 

Theorem. (Determination formula for     ( ) ) Suppose that     be nonnegative random variables, 

whose joint distribution function  is represented by an Archimedean  copula    with generator  ; namely, 

 (   )   (       )    (  ( )   ( ))    

where   ( )   (   )    ( )   (   ) are marginal distribution functions of  ,    respectively. Let 

     (   )   (     ) be a portfolio. Then, its Value at Risk at the confidence level  (    

 ), that is,     ( )    
(  )( )     {  |    ( )     can be attained as the solution   of the equation ; 
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In particular,  we have  
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Proof for simplicity, we assume that   ( ) is continuous and strictly monotone. General cases are treated 

with obvious modifications. First, we see that     ( ) is determined by the equation; 
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Now, thanks to the assumption that    is Archimedean, we derive  
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This completes the proof.  

              In the above computation, we note that the boundary conditions of copulas are taken into account. 

We remark that the original version of the equation has already been employed by Fantazzini (2008) for 

numerical computation. We have developed a substantially simple formula in the case of Archimedean 

copulas, which seems to be new in the literature. We also note that our previous result of Molina Barreto, 

Ishimura, and Yoshizawa (2019) contains an error, and the correct formula is expressed here. For another 

attempt in the same line of research, we refer to our recent work of Molina Barreto and Ishimura (2020).  

 

5.  Empirical Studies 

 We present an application for the formula to estimate Value at Risk via copula. This empirical 

analysis is based on our previous research Molina Barreto and Ishimura (2020), where the modelling is 

done with a Monte Carlo approach for sampling the quantile of the distribution given by the copula. 

 

5.1. Data description  

 We consider a portfolio composed of two assets: the S&P 500 and Jakarta Stock Exchange 

Composite Index (JCI). The data contains 2377 daily closing prices from December 7
th

 2009 to December 

6
th

 2019, and we compute the daily log-returns and ignore the entries that are not available at the same time 

in any of both markets. The data period excludes the direct effect of the United States subprime mortgage 
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crisis started from 2007. The data is taken from Yahoo Finance, and the implementation is performed with 

MATLAB.  

 
Figure 1 Daily returns and absolute returns of S&P500 and JCI stock indices. 

             Figure 1 shows plots for both log-returns and table 1 presents the main statistics. We remark the 

excess of kurtosis, and negative asymmetry is significant in this case. 

5.2 Marginal models and Copula estimation 

 For each marginal series, we consider a general AR(1)-GARCH(1,1) model with innovations with 

two compounded Gaussian mixture distributions. This idea seems accurate due to the characteristics that 

can be seen in the series as asymmetry and excess of kurtosis. We have observed that the ARMA-GARCH 

with normal mixture distributed innovation models fit this kind of series better than plain ARMA-GARCH 

with normal or t distributions.  

              For specifying a model for each series we consider ARMA(p,q)-GARCH(r, s) model for asset 

returns     (         )  is given by 
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Here,    (         ) is a sequence of independently distributed (i.i.d.) random variables with K 

component Gaussian mixture density defined as 

  ( )  ∑   (       )
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Table 1 Descriptive statistics of daily log-returns of S&P500 and JCI stock indices. 

Statistics S&P 500 JCI 

Mean 0.000441 0.000384 

Standard Deviation 0.009583 0.010504 

Minimum -0.068958 -0.092997 

Median 0.000611 0.001002 

Maximum 0.047775 0.070136 

Kurtosis 7.381000 9.112100 

Asymmetry -0.461540 -0.591570 

               For the estimation of the parameters, we use the Inference Function for Margins (IFM) method, to 

be precise, we first compute the estimator of the parameters for the ARMA-GARCH and normal mixture 

distribution with the quasi-likelihood estimation process and transform the series into uniform one with its 

cumulative distributions function. Once these parameters have been calculated, the next step is to estimate 

the parameters for the copula. Figure 2 shows the plot for conditional variance and standardized residuals 

with the estimated parameters. 
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Figure 2 Conditional variance and Standardized Residuals for log-returns series of S&P500 and JCI stock indices. 

               This selection is performed to see that there is no autocorrelation nor squared autocorrelation in 

the residuals. We also performed Ljung Box test to infer that the null hypothesis is not rejected from lag 1 

to 5. Values for Kolmogorov-Smirnov (KS), Chi-Square Goodness of t-test (CSG) and Anderson-Darling 

test used for the uniformity test for the standardized residuals are all accepted for the significance level of 

95%. 

               We have implemented this methodology with Clayton, Gumbel and Frank copula. Other examples 

of copulas are also possible to integrate to this estimation. Once the data is transformed into uniform data 

by its estimated cumulative distribution function, we construct the likelihood function for the copula and 

seek for the parameters that maximize it. 

5.3. Estimation of Value at Risk 

              We again consider the portfolio of equal weight. First, we estimate the parameters using the data 

from       to          as the initial window and update the parameters each day as for the marginal 

distributions as for the copula. Our target is to find the solution formula for VaR at the level         and 

       concerning the data from          to         (1000 days). We then compare the forecast 

VaR with the actual return of the portfolio.  

               By looking at the value of violations, we could infer that the performance of the proposed model is 

better over classical estimations of VaR as Historical or Variance-Covariance, thanks to the effect of 

nonlinear dependence given by the copula, as well as the improvement of implementing it to the 

computation of VaR. We also compared with benchmark models like Variance-Covariance. In all cases, the 

model with Clayton-Normal mixture gives the best results. Data is exhibited in figure 3 and figure 4. 
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Figure 3 Estimation of Value at Risk for significance level at 5% for the portfolio with several methods. 

5.4 Backtesting 

               To ascertain the outcome of computation, several back-testing methodologies are considered. We 

have used the Binomial test (Bin), Kupiec's POF test (POF), and Christoffersen's test (CCI), respectively. 

See Christoffersen (1998). The result is shown in table 2. Our empirical analysis has shown that the 

proposed models with copulas result in better estimations than models such as Historical or Variance-

Covariance methods. Thanks to the property of copula, we can explain a better nonlinear correlation 

between the two indexes studied here. In effect, for extreme losses, the copulas (except for Gumbel copula) 

give better estimates and pass all the three backtests. We can also observe similar behavior for the three 
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copulas.

 

Figure 4 Estimation of Value at Risk for significance level at 1% for the portfolio with several methods. 

Table 2 Results of the VaR backtesting for the models with the significance level      and       Test conducted 

here includes the Binomial test, Proportion of Failures test (POF), Conditional Coverage Independence test 

(CCT). Each test has its p-value for the significance at the     level.  

 
 

6.  Conclusion 

The estimate of Value at Risk (VaR) for the portfolio problem is discussed. The portfolio consists 

of two risk factors, which are not necessarily independent but possibly nonlinearly related. We further 

assume that these random effects are represented by an Archimedean copula. In this setting, we have 

established the determination formula for evaluating the VaR of the portfolio. The formula is simple and 

may become a basis for further investigation. We also believe there are fruitful applications both in 

theoretical and practical fields.   

Model Binomial test Z-score p-value Failures Prop. Failures POF test Likelihood ratio p-value CCI test Likelihood ratio p-value

b=5% 50 0.05

Clayton NM-5 accept -0.72548 0.4682 45 0.045 accept 0.54382 0.46085 accept 3.5136 0.06087

Gumbel NM-5 accept -0.43529 0.6634 47 0.047 accept 0.19318 0.66029 reject 5.0767 0.02425

Frank NM-5 accept -0.72548 0.4682 45 0.045 accept 0.54382 0.46085 accept 1.6801 0.19491

Historical-5 accept -1.59600 0.1105 39 0.039 accept 2.74690 0.09744 accept 3.1141 0.07762

Var. Covar-5 accept 1.74110 0.0817 62 0.062 accept 2.82600 0.09275 accept 2.4326 0.11884

beta=1% 10 0.01

Clayton NM-1 accept 0.31782 0.7506 11 0.011 accept 0.09783 0.75444 accept 0.2449 0.62066

Gumbel NM-1 reject 2.22470 0.0261 17 0.017 reject 4.09100 0.04311 accept 0.5886 0.44295

Frank NM-1 accept 1.58910 0.1120 15 0.015 accept 2.18920 0.13898 accept 0.4573 0.49887

Historical-1 accept -1.58910 0.1120 5 0.005 accept 3.09370 0.07859 accept 0.0503 0.82254

Var. Covar-1 reject 4.44950 0.0861 24 0.024 reject 14.22100 0.00016 accept 1.1817 0.27702
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In our previous research of Molina Barreto and Ishimura (2020), it is indicated that a copula-based 

approach yields a better estimate of VaR compared to standard ARMA-GARCH modelling; precisely 

stated, obtained values of copula-based estimation, in a sense, reflect the total risk of the portfolio 

effectively. Our formula may be served as a handy tool for further study on VaR estimation. The current 

empirical studies also show the effectiveness of copula-based methods. However, more deep investigations 

should be performed in order to conclude what method is appropriate. We continue our researches on VaR 

estimation.  
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