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Abstract 

Tuberculosis (TB) is an infectious and airborne disease caused by Mycobacterium tuberculosis. TB kills more 
than 1 million people every year. In Indonesia, TB is the fourth leading cause of mortality. One of WHO's current 
focuses for eliminating TB is on Latent Tuberculosis Infection (LTBI). The recovery rate in LTBI needs to consider a 
long-term solution. Understanding the effect of the recovery rate in LTBI in the process of eliminating TB is important. 
In this study, SE3I3R model is used. The model has implemented in Indonesia based on data of 2018 obtained from 
several sources. The Fourth-order Runge-Kutta method is used to solve the model. This work uses the recovery rates of 
3%, 10%, 20%, and 30%. Based on the simulation result, the number of LTBI tend to decline year by year. The higher 
the recovery rate in LTBI, the lower the number of TB cases occurs. In other words, the recovery rate in LTBI has a 
significant effect on reducing TB transmission in Indonesia. Although at increasingly higher recovery rate, the 
incremental reduction in a number of exposed becomes progressively smaller. Furthermore, the target of SDG to the 
end the TB cases by 2030 will not be reached. 
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1.  Introduction 

Tuberculosis (TB), an infectious and airborne disease, is caused by Mycobacterium tuberculosis 
(Mtb) (Bansal, Sharma, & Singh, 2017). TB mainly affects the lungs and is a primordial infectious disease 
which is characterized by the formation of tubercles, often developing long after the initial infection 
(Moghaddam et al., 2016). As the ninth leading cause of death worldwide, TB is the leading cause of a 
single infectious agent, ranking above HIV/AIDS, and remains a public health problem (Kritski et al., 
2018). An urgent action with new approaches is needed to achieve the WHO's elimination targets of an 80% 
reduction in TB cases and a 90% reduction in deaths by 2030 (Brooks-Pollock & Jacobson, 2018).  TB kills 
people more than 1 million people every year and is a leading cause of morbidity and mortality, especially 
in low-income and lower-middle-income economic countries (LMIC) like Indonesia. According to the 
global tuberculosis report 2018, Indonesia (8%) is ranked as the country with the third burden of 
tuberculosis cases in the world after India (27%) and China (9%) (WHO, 2018). 

TB is the fourth leading cause of mortality in Indonesia (IHME, 2018).  Significant and persistent 
gaps in detection and treatment still exist until now. There are 3.6 million global gaps in TB in the world. 
80% of the gaps are accounted for by India (26%), Indonesia (11%) and Nigeria (9%) as the top three 
(WHO, 2018). Furthermore, the gaps between the estimated number of new cases and the number reported 
are due to a mixture of underreporting of detected cases and underdiagnosing. In 2017, a national study in 
Indonesia found that although about 80% of new cases were detected, 41% of these cases were not reported. 
Actions to correct underreporting are being put in place (WHO, 2018). In 2018, WHO estimated that the 
number of TB incidence in Indonesia was 842,000 cases, the incidence of MDR/RR-TB was 23,000 cases 
and the TB mortality of 107,000 cases (WHO, 2018). 

One of WHO's current focus in eliminating TB is therapy for latent tuberculosis infection (LTBI) 
as a form of TB prevention. Many studies have concluded that therapy of LTBI is an effective way of 
preventing future cases of tuberculosis disease (Cruz, Ahmed, Mandalakas, & Starke, 2018). Treatment for 
active TB involves four antibiotics to reduce the likelihood of acquired drug resistance while treating LTBI 
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only uses one or two antibiotics. Although preventive therapy for LTBI has been available and emphasized 
in industrialized nations, its use has been limited in most resource-limited settings (Cruz et al., 2018). 

Furthermore, one of the essential things in eliminating TB is the recovery rate in LTBI. In this 
study, the recovery rate in LTBI defines as the rate at which an individual transforms from LTBI to a 
recovered individual because one of two possibilities has happened. The possibilities are that an LTBI 
individual has received and consumed drugs for a total of 6 months in preventive therapy, or that LTBI does 
not develop to be a TB disease after two years because his individual has good immunity. The value of the 
recovery rate in this study is the combined value of the two possibilities expressed as a percentage. 

Besides, the eradication of TB in Indonesia depends not only on medical issues but also the ability 
to understand the transmission dynamics of TB. Unrecognized transmission is a major contributor to 
ongoing TB epidemics in high-burden, resource-constrained settings. One of the needs for recognizing 
transmission is to predict the TB case in the future. Modeling plays an essential role in epidemiology by 
providing a concrete mechanism for the understanding of disease transmission and suggesting effective 
control measures ( Hugo, Makinde, Kumar, & Chibwana, 2017). Also, the main scope of mathematical 
modeling in epidemiology is to develop models that will assist the decision-making process by helping to 
evaluate the consequences of choosing one of the alternative strategies available (Liddo, 2016). Modeling 
studies can be considered in the process of developing guidelines, particularly in the evaluation of public 
health programs, long-term effectiveness or comparative effectiveness (Egger et al., 2017). 

The first publication addressing the mathematical model of epidemics dates back in 1766 (Siettos 
& Russo, 2013). A study that has a profound effect on the modeling of disease spread was reported by 
Kermack & McKendrick (Kermack & McKendrick, 1927). Mathematical models as quantitative analytical 
tools can play an essential role in informing The Sustainable Development Goals (SDGs) for 2030 and the 
End TB Strategy for 2035. Mathematical models have employed in the study of the epidemiology of TB 
since 1962 (Waaler, Geser, & Andersen, 1962). The phenomenon of TB transmission can be observed and 
analyzed through mathematical models. They can help us to predict and control TB transmission. A valid 
model can project the effects of interventions on the dynamics of disease for short or long periods. The 
mathematical model has become a powerful tool for analyzing epidemiological characteristics.  

Some studies have used a mathematical model for TB transmission. Kim, Reyes, and Jung (2018) 
developed a mathematical model and intervention strategies for mitigating tuberculosis in the Philippines 
using susceptible (S), high-risk latent (E), infectious (I), and low-risk latent (L) group as a SEIL model. 
Egonmwan and Okuonghae (2018) used SE3IJ2T model which consist of susceptible (S), new latently 
infected (E1), diagnosed latently infected (E2), undiagnosed latently infected (E3), undiagnosed active 
infected (I), diagnosed actively-infected with prompt treatment (J1) and diagnosed actively infected with 
delayed treatment (J2) and treated (T). 

Another study that used a mathematical model that of Zhao, Li & Yuan (2017). They conducted an 
analysis of transmission and control of tuberculosis in mainland China based on the age-structure 
mathematical model using S3EIR model. The model included a susceptible class which is divided into three 
age groups: childhood (S1), middle-aged (S2), and senior (S3), followed by exposed (E), infectious (I), and 
recovered (R) class. They also assumed that the latent, infectious, and recovered classes are the same for 
different age groups. Okuonghae and Ikhimwin (2016) developed an S2E2IJT model. They divided the 
susceptible and exposed classes into 2 categories, namely with a low level of awareness and high level of 
awareness, respectively. In their model, there are infectious as I, identified infectious (for treatment under 
DOTS) as J and the effectively treated individuals as T.  

In this study, we will propose and analyze a deterministic mathematical model in epidemiology for 
TB transmission by simulating the recovery rates of 3%, 10%, 20%, and 30%. It is done to investigate the 
effect of the recovery rate in eliminating TB in the future. The basis of the model used is susceptible-
exposed-infectious-recovered-susceptible (SEIRS) but we have modified that model to be SE3I3RS. The 
reason is that we want to develop a realistic model that is not only mathematically but also follows the 
pathogenesis of tuberculosis transmission. Indonesia is studying the setting and the newest data of TB 
transmission in Indonesia are used as baseline data in the mathematical model. We consider the types of 
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active TB and some crucial parameters in TB transmission such as different mortality rates in active TB, 
relapse rates and recovery rates from either LTBI or active TB in the model. 

 
2.  Objectives 

This study aimed to investigate the effect of recovery rate in latent tuberculosis infection using a 
mathematical model to reduce tuberculosis transmission in Indonesia. 

 
3.  Materials and Methods 
3.1 Assumption and Model Formulation 

Mtb is carried in airborne particles called droplet nuclei. In the pathogenesis of TB, droplet nuclei 
containing tubercle bacilli are inhaled, enter the lungs, and travel to the alveoli in susceptible individuals. 
Susceptible individuals are those who can incur the disease but are not yet infected ( Lahrouz, El Mahjour, 
Settati, & Bernoussi, 2018). We symbolize susceptible individuals as . Further, tubercle bacilli will 
multiply in the alveoli in susceptible individuals. A small number of tubercle bacilli enter the bloodstream 
and spread throughout the body. Within weeks after infection, the immune system is usually able to halt the 
multiplication of the tubercle bacilli, preventing further progression (CDC, 2013). At this point, LTBI has 
been established. In this condition, susceptible individuals change to LTBI.  

LTBI is a state of persistent immune response to stimulation by Mtb antigens with no evidence of 
clinically manifest active TB (WHO, 2018). We denote anyone who has LTBI as exposed individuals in the 
mathematical model.  Exposed individuals cannot spread TB bacteria to other people. The vast majority of 
infected people have no signs or symptoms of TB but are at risk for active TB disease (WHO, 2018). We 
symbolize exposed individuals as  and his infection rate of susceptible individuals to exposed individuals 
as  We divide  into three compartments according to transmission of each infectious individual; exposed 
individuals for drug-susceptible tuberculosis, exposed individuals for multidrug-resistant tuberculosis, and 
exposed individuals for extensively drug-resistant tuberculosis denoted consecutively , , and . 

Anyone who has a TB infection can develop TB disease. In this condition, exposed individuals 
will change to infectious individuals as active TB. Infectious individuals refer to infected individuals who 
developed the disease. This condition is characterized by signs or symptoms of active disease, or both, and 
is distinct from LTBI, which occurs without signs or symptoms of active disease (WHO, 2013). Infectious 
individuals can transmit Mtb to susceptible individuals through interpersonal contacts (Liddo, 2016). This 
model assumes that each susceptible individual has to pass the exposed compartment before that individual 
changes to be an infectious individual. Infectious individual comprised those with drug-susceptible 
tuberculosis (DS-TB) and drug-resistant tuberculosis (DR-TB). 

We consider that infectious individuals  are divided into three compartments namely drug-
susceptible TB (DS-TB) , multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-
TB)  Both MDR-TB and XDR are DR-TB (Kurz, Furin, & Bark, 2016). DR-TB is caused by 
transmission of resistant strains of Mtb or by the acquisition of resistance through inadequate treatment 
(Seddon et al, 2012). Additionally, DR-TB is transmitted in the same way as DS-TB, and DS-TB is no more 
infectious than DR-TB. However, delay in recognition of drug resistance or prolonged periods of 
infectiousness may facilitate increased transmission and further development of drug resistance. 

DS-TB refers to patients who do not have evidence of infection with strains resistant to rifampicin 
(i.e. not rifampicin-resistant (RR) or MDR-TB). MDR-TB, one of the DR-TB types, is defined as 
resistance to isoniazid and rifampicin, with or without resistance to other first-line drugs (FLD). XDR is 
resistant to any fluoroquinolone and at least one of three second-line injectable drugs (SLD) such as 
capreomycin, kanamycin, and amikacin, in addition to multidrug resistance (WHO, 2014). XDR-TB 
treatment is more toxic, more expensive, and less effective (CDC, 2013). 

The rate at which exposed individuals become infectious is symbolized by . If the immune 
system in susceptible individuals cannot keep the tubercle bacilli under control, the bacilli will begin to 
multiply rapidly. This process can cause exposed the individual to become an infectious individual as well. 
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Preventive therapy for exposed individuals in TB is essential for controlling and eliminating TB disease. 
The exposed individuals can move to recovered individuals because of the recovery rate. In this model,  is 
the recovery rate. The recovery in exposed individuals can occur either with or without treatment. 

To make it clear, we define recovered individuals as people who have healed from infection. There 
are two ways to move to the recovered compartment namely through recovery rate of exposed individuals 
and treatment success rates of infectious individuals. If an individual becomes a recovered individual 
through the treatment success rate then the individuals have followed the treatment and get the outcome as 
cured or treatment completed from treatment outcomes. In this model, we give symbol recovered 
individuals as . 

DR-TB disease can develop in two different ways, called transmitted (or primary) or acquired (or 
secondary) resistance (Dheda et al., 2017). Primary resistance occurs in persons who are infected with 
resistant organisms initially. Secondary resistance develops during TB treatment because the patient either 
was treated with an inadequate regimen or did not take the prescribed regimen appropriately or because of 
other conditions such as drug malabsorption or drug-drug interactions that led to low serum levels (CDC, 
2013). In this model,  is the symbol for the development rate from DS-TB to MDR-TB,  is the symbol 
of the development rate from MDR-TB to XDR-TB, and  is the symbol of development rate from DS-TB 
to XDR-TB. The development rate of DS-TB to XDR-TB is very low but possible. It occurs because of 
several possibilities; two of them are poorly compliant patients taking the drug for a very long time or 
inappropriate drug administration so that Mtb will develop as XDR-TB.  

Treating and curing DR-TB is complicated and take longer than the treatment of TB with no 
resistance (Bule, 2017). Furthermore, the treatment success rate for each compartment in this mathematical 
model will be symbolized as . The treatment success rate is the sum of cured and treatment completed 
(WHO, 2014). Relapse continues to be a significant problem and is an essential indicator of the 
effectiveness of TB control. Relapse refers to patients who have previously been treated for TB, were 
declared cured or treatment completed at the end of their most recent course of treatment, and are now 
diagnosed with a recurrent episode of TB (either a true relapse or a new episode of TB caused by 
reinfection) (WHO, 2014).  

This study gives  as the relapse rate.  It seems that the higher the local incidence, the higher the 
proportion of reinfection (Wang et al., 2018). People who had TB once are at a strongly increased risk of 
developing TB when re-infected. Recovered individuals are assumed not to acquire permanent immunity; 
So, there is a transfer from recovered to susceptible compartment indicated by the loss of immunity rate. It 
occurs due to patients having no immunity after recovering and becoming susceptible individuals again. 
The loss of immunity rate of recovered to susceptible individuals is symbolized with . 

In this mathematical model,  symbolizes the total population and  is the natural birth rate. We 
divide death rate into two components;  is natural death rate in susceptible, exposed and recovered 
individuals, and  is the rate of death that occurs before or during treatment in infected individuals. Based 
on all our assumptions, we evolved and partitioned the model with eight compartments according to their 
epidemiological status representing each group of the population. The eight compartments are susceptible, 
exposed for DS-TB, exposed for MDR-TB, exposed for XDR-TB, DS-TB, MDR-TB, XDR-TB and 
recovered compartment. The total population size at a time  is denoted by  and therefore we have: 

 
(1) 

 
In our work, our model is a deterministic mathematic model so that we assume that all parameters 

in the mathematical model are positive constant. Based on these assumptions we can construct a flowchart 
for TB transmission in Indonesia as Figure 1. The model was developed under the following assumptions: 
the rate of change of any state is equal to the number entering into the state minus the number leaving the 
state per unit time. The growth of susceptible compartment depends on the natural birth rate. The 
susceptible compartment will increase because of the loss of immunity rate from the recovered 
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compartment. The condition occurs because the immunity in a recovered individual after completion of TB 
treatment wanes over time. Further, the susceptible compartment will be decreased because of infected rate 
as well. The exposed compartment will increase because of the infected rate of susceptible to the exposed 
compartment. On the other hands, over time, the exposed compartment will be decreased because exposed 
individuals will become infectious individuals because their immune system is weakened and because of 
the recovery rate from exposed to recovered individuals. 

DS-TB compartment will increase due to the infectious rate of exposed individuals to DS-TB 
individuals and the relapse rate of recovered individuals to DS-TB individuals. It will decrease because of 
the developed rate of DS-TB to MDR-TB individuals, the developed rate of DR-TB to XDR-TB individuals 
and the treatment success rate of DS-TB individuals becoming recovered individuals. 

 
Figure 1 Flowchart of TB Transmission 

 
The number of individuals in the MDR-TB compartment will increase due to the infectious rate of 

exposed to MDR-TB individuals, the developed rate of DS-TB to MDR-TB individuals and the relapse rate 
of recovered individuals to MDR-TB individuals. It will decrease because of the developed rate of MDR-
TB to XDR-TB individuals and the treatment success rate of MDR-TB becoming recovered individuals. 
The number of individuals in the XDR-TB compartment will increase due to the infectious rate of exposed 
to XDR-TB individuals, the developed rate of MDR-TB to XDR-TB individuals and the relapse rate of 
recovered to XDR-TB individuals. It will decrease because of the treatment success rate of XDR-TB to 
recovered individuals. 

The recovered compartment will increase due to the recovery rate of each exposed compartment 
and treatment success rate of each infectious compartment and will decrease due to loss of immunity rate 
and relapse rate. In this model, we assume that each compartment will be decreased because of the natural 
death rate as well. Another special assumption in the infectious compartment is that it will decrease because 
of the death rate which is caused by any reason before starting or during the course of treatment. Based on 
the assumption, we formulate the mathematical model in ordinary differential equation form as follows 

 

(2)  
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In this study, there is an assumption that there is no difference in the recovery rate among the three 
classes of exposed individuals at any one time. Further, because equation (2), the ordinary differential 
equation, is too complicated to solve analytically, we will use the Fourth-order Runge-Kutta method to 
solve it. The duration in this study is 156 months starting from January 2018 and ending in December 2030. 
3.2 State and Parameter Value 

The initial values of state variables and parameters which are used in this study are obtained from 
the literature review including research articles, books, reports, and other research related to the study. 
Table 1 shows the initial values of state variables. The parameter values used in the study are chosen and 
calculated to be as close to Indonesia condition as possible, see Table 2.  
 
Table 1 Initial Value of State Variable for Tuberculosis Transmission in Indonesia 
Sy Unit Value Reference Sy Unit Value Reference 

 Persons 142,878,297 Data fitteda Persons 836,879 Data fittedc 

 Persons 120,000,000 Houben & Dodd (2016) Persons 5,070 WHO (2018) 

 Persons 119,270,166 Data fittedb Persons 51 WHO, (2018) 

 Persons 722,565 Data fittedb Persons 279,703 MoH RI (2018) 

 Persons 7,269 Data fittedb Persons 264,000,000 WHO (2018) 

 Persons 842,000 WHO (2018)     
Sy : Symbol, WHO : World Health Organization, MoH RI : Ministry of Health of the Republic of Indonesia (2018). a value is 
estimated based on data from the MoH RI, WHO and Houben & Dodd data. b value is estimated based on data from the proportion of 
DS-TB, MDR-TB, and XDR-TB from WHO and Houben & Dodd data. c values is estimated based on WHO’s data 
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Table 2 Value of Parameter for TB transmission 

Sy Description of parameters Unit Value Reference 

 

the natural birth rate Per year 0,01888 World Bank (2018) 

 

the natural death rate  Per year 0.00712 World Bank (2018) 

 

the natural death rate of  Per year 0.2 Dheda et al. (2017) 

 

the natural death rate of  Per year 0.4 Dheda et al. (2017) 

 

the natural death rate of  Per year 0.6 Dheda et al. (2017) 

 

the infected rate of  to  Per year 0.0879 Data fittedd 

 

the infected rate of  to  Per year 0.00053 Data fittedd 

 

the infected rate of  to  Per year 5.354x10-6 Data fittedd 

 

the infectious rate of to  Per year 0.05 WHO (2018)  

 

the infectious rate of to  Per year 0.05 WHO (2018)  

 

the infectious rate of to  Per year 0.05 WHO (2018)  

 

the developed rate of  to  Per year 0.05 Dheda et al. (2017) 

 

the developed rate of  to  Per year 0.1 Dheda et al. (2017) 

 

the developed rate of  to  Per year 0.05 Dheda et al. (2017) 

 

the treatment success rate of  to  Per year 0.86 WHO (2018) 

 

the treatment success rate of  to  Per year 0.47 WHO (2018) 

 

the treatment success rate of  to  Per year 0.28 WHO (2018) 

 

the relapse rate of  to  Per year 1.6956 x10-3 Widyaningsih et al. (2018)

 

the relapse rate of  to  Per year 1.6956 x10-3 Widyaningsih et al. (2018)

 

the relapse rate of  to  Per year 1.6956 x10-3 Widyaningsih et al. (2018) 

 

the recovery rate of  to  Per year 0.03, 0.1, 0.2, 0.3 Assumede 

 

the recovery rate of  to  Per year 0.03, 0.1, 0.2, 0.3 Assumede 

 

the recovery rate of  to  Per year 0.03, 0.1, 0.2, 0.3 Assumede 

 

the loss immunity rate of  to  Per year 0.9877 Data fittedf 
d value is estimated based on data from the WHO's statement and calculation. e value is estimated based on assumed by researcher. 
fvalue is estimated based on data from residual calculations using a parameter in R compartment 

The lower bound value is 3% and will be used as the baseline of the recovery rate. We assume that 
3% is the level that has been achieved by the Indonesian government. While 30% is the highest possible 
value to be achieved by the Indonesian government and will be the upper bound value. Furthermore, 10% 
and 20% are assumed as representatives of other recovery rates between lower and upper bounds. 

 
4.  Results and Discussion 
 In this study, we used four values of recovery rate, namely 3%, 10%, 20%, and 30%, to see more 
clearly the differences among the conditions. The results are illustrated in Figure 2. Figure 2 (a) was a 
comparison of the recovery rate in DR-TB individuals. The recovery rate of 3% was used as a baseline and 
we assumed that this achievement will not decrease until 2030. Next, the baseline position was at the top 
with the highest number of DR-TB until 2030. This was followed by recovery rates of 10%, 20%, and 30%. 
If the Indonesian government can consistently achieve recovery rates of 10%, 20% and 30% then the total 
numbers of individuals that will avoid getting DS-TB are 1,106,871 (33.0%), 1,897,552 (56.6%) and 
2,274,091 (67.8%), respectively. 

Graphically, there was a significant difference between using the recovery rate of 3% and 10% 
even though the difference in the recovery rate between them is only 7%. Different results are shown 
between using the recovery rate of 20% and 30%. Graphically, there was not too much difference between 
them even though the recovery rate difference was 10%. Further, looking at the DS-TB compartment, we 
concluded that the recovery rate of 30% could significantly minimize the number of DS-TB until 2030. 
Using different recovery rate also gave different results on MDR-TB. It is illustrated in Figure 2 (b) in 
which, if the Indonesian government consistently can achieve the recovery rate until 2030 by 10%, 20%, 
and 30%, then the total numbers of individuals who avoid getting MDR-TB are 44 (0.03%), 4,277 (3.30 %) 
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and 9,112 (7.02%) individuals, respectively. Based on the simulation results, it was concluded that using the 
10% recovery rate was not too different when compared to the baseline.  

The simulation result from the mathematical model for XDR-TB is illustrated in Figure 2 (c). The 
use of the recovery rates of 10%, 20% and 30% as compared to the baseline significantly reduced the 
numbers of individuals getting XDR-TB by 7,658, 8,728, and 6,411, respectively. In this situation, the 
recovery rate of 20% was the best rate to avoid individuals from MDR-TB. Further, if we observe the 
proportions compared with the baseline, the proportions are not too different at 6.46%, 7.36% and 5.41% 
for the recovery rates of 10%, 20%, and 30%. 

 

 
2 (a) 2 (b) 2 (c) 

Figure 2 (a) Distribution of DR-TB individuals, (b) distribution of MDR-TB individuals, and (c) distribution of XDR-
TB individuals 

 
The recovery rate that occurs on exposed individuals has a positive effect on all exposed 

compartments. Graphically, in Fig. 2 (d) – 2 (f), it can be seen that the higher the recovery rate achieved, so, 
the greater is the decrease that occurs in each exposed compartment. Based on numerical simulation results 
there would be a decline in the number of exposed individuals for DS-TB by the amount of 45,349,049 
individuals for the recovery rate of 10%, 67,733,164 individuals for the recovery rate of 20%, and 
73,890,659 individuals for the recovery rate of 30% (Fig. 2 (d)). In exposed individuals, for the MDR-TB 
compartment, there are also significant declines of 274,471 individuals for the recovery rate of 10%, 
409,883 individuals for the recovery rate of 20% and 447,096 individuals for the recovery rate of 30%. 

 

 
2 (d) 2 (e) 2 (f) 

 
Figure 2 (d) distribution of exposed individuals for DR-TB, (e) distribution of exposed for MDR-TB, and (f) 

distribution of exposed individual for XDR-TB 
 

In recovered compartments, it is seen that the recovery rate of 30% could maximize the number of 
recovered individuals from TB for 13 years. However, at the end of that period, the result is almost the 
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same as that for a recovery rate of 20%. This is illustrated in Figure 2 (g). If we observe graphically and 
numerically, there is information that the recovery rate of 30% until 2030 is the best recovery rate for 
increasing the number of susceptible individuals. This is clearly seen in Figure 2 (h). 

 

2 (g) 2 (h) 
Figure 2 (g) Distribution of recovered individuals and (h) distribution of susceptible individuals 

 
Completely, the simulation results on the number of individuals in 2030 based on each 

compartment can be seen in Table 3. 

Table 3 The simulation results that use different recovery rates (the number of individuals) 

Com 
January, 2018 December, 2030 

Initial value The first rateg The second rateh The third ratei The fourth ratej

 

 142,878,297   163,036,244  185,996,850  202,430,423   210,276,873 

 

 119,270,166   76,239,712  30,890,662  8,506,547   2,349,052 

 

 722,565   461,207  186,735  51,324   14,111 

 

 7,269   4,640  1,879  516   142 

 

 836,879   3,349,501  2,242,631  1,451,950   1,075,410 

 

 5,070   129,798  129,842  125,521   120,686 

 

 51   118,530  126,188  127,258   124,941 

 

 279,703   23,439,526  47,296,499  54,259,295   53,040,989 

 

 264,000,000   266,779,158  266,871,285  266,952,834   267,002,204 
Com : Compartment,  g the simulation used the recovery rate of 3%, h the simulation used the recovery rate of 10%, i the simulation 
used the recovery rate of 20%, and j the simulation used recovery rate of 30%. 

 
5.  Conclusion 

To eliminate TB cases in Indonesia, the recovery of LTBI needs to be done with maximum effort 
because the recovery rate has a significant impact on eradicating TB in the future. If we observe the result 
of the simulation, the higher the recovery rate achieved, the greater the number of individuals can avoid 
getting TB disease. Based on the simulation result, the target of SDG to the end the TB cases by 2030 will 
not be reached. 

Generally, the recovery rate of 30% can reduce the number of DS-TB significantly. As a 
recommendation, to increase the recovery rate, Indonesia must carry out health programs to increase 
awareness of the population such as a healthy life campaign so that the population in Indonesia, especially 
LTBI individuals, have good immunity system in the body. The strong immune system in exposed 
individuals (LTBI) will help LTBI individuals reduce bacterial growth in the body. Then, the Indonesian 
government must be able to provide logistics and the best services in TB preventive therapy for the LTBI in 
remote areas. Another recommendation for eliminating TB in the future is by considering effort and costs; 
the Indonesia government must achieve a minimum recovery rate of 10%. 
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