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Abstract 

Central nervous system (CNS) involvement in tuberculosis is still prevalent in many parts of the world. It is 
not clear what promotes CNS invasion and pathology in this disease. Apart from host susceptibility, microbial factors 
could be involved as well, as specific genetic traits of Mycobacterium tuberculosis (Mtb) have been reported in isolates 
from patients with TB meningitis. In this study, we used whole genome sequences (WGS) to search for homologs of 
genes reported previously by other workers to be associated with meningitis in mycobacterial, meningococcal, 
pneumococcal and E. coli K1 infections. In eight Mtb isolates from the cerebrospinal fluid of Malaysian patients, we 
found homologs of various meningitis-associated genes reported for Mtb, M. leprae, M. bovis, M. lepromatosis, M. 
ilatzerense and M. immunogenum as well as Streptococcus pneumoniae and Neisseria meningitidis. Representative 
putative genes were verified with PCR-Sanger sequencing and found to be related to the PPE protein family known to 
comprise immune-related proteins that play important roles in mycobacterial antigen variation, the host immune 
suppression system, and the synthesis of bacterial walls with high degrees of hydrophobicity. The detection of common 
meningitis-associated genes in mycobacterial and non-mycobacterial neuro-pathogens raised speculations on the 
existence of a pan-bacterial mechanism of CNS infection. However, a wider search of NCBI genome databases revealed 
the presence of these apparently neurotropic genes in many respiratory Mtb isolates. The relevance of these genes to 
CNS disease needs to be further evaluated by gene expression and gene functionality studies. 
 
Keywords: Mycobacterium tuberculosis, central nervous system, meningitis, whole genome sequencing, meningitis-
associated gene, PPE proteins 
______________________________________________________________________________________ 
 
1.  Introduction 

Tuberculosis (TB) is one of the oldest documented communicable diseases and its incidence has 
been on the rise since the early 1980s. The major portal of entry for Mycobacterium tuberculosis (Mtb) is 
the respiratory tract. Following inhalation into the pulmonary alveoli, TB bacilli are phagocytosed by 
alveolar macrophages, but they can survive the hostile intracellular environment to cause local lesions or be 
disseminated to extra-pulmonary sites (Nicholas A Be, Kim, Bishai, & Jain, 2009; Bini Estela & Hernandez 
Pando, 2014; Donald, Schaaf, & Schoeman, 2005). It is still unclear what factors (microbial or host) 
determine a confined pulmonary lesion (usual presentation) or dissemination to extra-pulmonary sites, 
including the central nervous system (CNS). However, the exact mechanisms of infection of the CNS are 
poorly understood (Sundaram, Shankar, Thong, & Pardo-Villamizar, 2011). 

Both host susceptibility factors and specific mycobacterial genetic traits have been implicated in 
CNS infection. The host association has been studied extensively and numerous clinical studies have 
reported the greater risk of CNS infection in immune-compromised individuals (Yang et al. 2004; Vinnard 
& MacGregor 2009; Elmas et al. 2011; Sáenz et al. 2017). In addition, various polymorphisms in human 
genes have been identified to be associated specifically with susceptibility to Mtb meningeal infection 
(Campo et al., 2015; Hawn et al., 2006; Hoal-Van Helden et al., 1999). With respect to the mycobacterium, 
five Mtb genes (Rv0311, Rv0805, Rv0931c, Rv0986, MT3280) have been identified to be associated with 
invasion or survival in the CNS but not in lung tissues (N A Be et al., 2008). In particular, the sensor 
domain of Mtb pknD (Rv0931c) was reported to be able to trigger the invasion of brain endothelia but not 
the lung epithelia (N. A. Be, Bishai, & Jain, 2012). The genetics of neuro-tropism has also been described 
in other meningitis-causing agents such as HIV (Dunfee et al. 2006; Eugenin et al. 2006), Escherichia coli 
(Kim, 2006), Neisseria meningitidis (Coureuil et al., 2012; Tinsley & Nassif, 1996), Mycobacterium leprae 
(Shimoji, Ng, Matsumura, Fischetti, & Rambukkana, 1999; Singh & Cole, 2011), fungal and parasitic 
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pathogens (Brown et al., 2014; Matsuura et al., 2000). However, data on the factors and mechanisms 
underlying neuro-tropism in mycobacterial infections is still lacking. New knowledge is needed to augment 
current understanding of TB meningitis and the Mtb strain-specific traits that are related to this pathology. 
Uncovering microbial genetic factors that are associated with neuro-tropism in M. tuberculosis might also 
lead to the future development of new diagnostics, improved therapeutics and novel vaccines against TB. 
 
2.  Objectives 

In this study, it is hypothesized that certain microbial genetic factors play a role in the predilection 
of certain Mtb strains for neuro-tropism. In order to look into this, the whole genome sequences of CSF-
derived and sputum-derived Mtb were subjected to homologue analysis comparing the genes reported 
previously by other scientists to be associated with meningitis in mycobacterial, meningococcal, 
pneumococcal and E. coli K1 infections. Verification of six putative genes derived from the next generation 
sequencing (NGS) was performed. 
 
3.  Materials and Methods 
Genomic DNA Extraction and Purification 

Bacterial DNAs of Mtb were isolated using Phenol-Chloroform-Isopropanol (PCI) method to 
obtain a high yield of DNA. Lysis of Mtb was performed by overnight incubation with 10.0 mg/ml 
lysozyme at 37°C, following by the addition of 10% SDS. It was then purified using 5.0 M of sodium 
chloride, followed by the addition of phenol/chloroform/isoamyl alcohol (25:24:1) (ROTI, Germany) to 
remove all proteins. Finally, nucleic acids were recovered from the aqueous solution with ethanol 
precipitation using 3.0 M of sodium acetate and ice-cold isopropanol, and overnight incubation of the 
mixture at - 20°C. The pellet was washed with 80 % ethanol and dried at room temperature. The required 
DNA precipitate was dissolved and diluted with autoclaved distilled water. 
 
MiSeq® Sequencing 

The extracted genomic DNA of Mtb was then quantified using Qubit® fluorometer (Invitrogen, 
USA) and Qubit dsDNA High sensitivity kit. DNA (6 pM) was loaded into the pre-filled reagent cartridge 
and the sequencing was performed on the Illumina MiSeq platform (Illumina, USA). 
 
Read Quality Assessment and Assembly 

The quality of raw sequences generated from MiSeq was checked using FastQC. Raw reads were 
trimmed at Phred probability score of 30 and were de novo assembled using CLC Genomic Workbench 5.1 
(Qiagen Inc., Netherlands). Trimmed sequences were assembled with length fraction of 0.8 and similarity 
fraction of 0.8. All assemblies were evaluated based on statistical assessment, focusing on genome size, 
sequence continuity and number of contigs. The genomes were further screened for contamination against 
common contaminants databases and then used for downstream analyses. To decrease the possibility of 
inaccurate assembly, the assembly and scaffolding of the genomes in IDBA-UD, a de novo assembler of 
NGS data (Peng, Leung, Yiu, & Chin, 2012) and SSPACE, a stand-alone program for scaffolding pre-
assembled contigs using next generation sequencing (NGS) paired-read data (Boetzer & Pirovano, 2014), 
were repeated, respectively. 
 
Amino Acid Comparisons 

The assembled genomes of the eight CSF strains were annotated using the self-training annotation 
algorithm in GeneMarkS (Besemer, Lomsadze, & Borodovsky, 2001). Orthologous protein sequences were 
identified in the ProteinOrtho program, with e-value of 1x10-5 (Lechner et al., 2011). The effect of amino 
acid substitution was evaluated using the I-mutant webserver (https://folding.biofold.org/cgi-bin/i-
mutant2.0.cgi) (Capriotti, Fariselli, & Casadio, 2005) for change in protein stability, the GlobPlot 
standalone python script (https://globplot.embl.de/) (Linding et al., 2003) for globularity and the ProTherm 
database for the calculation of Gibbs free energy change (https://www.abren.net/protherm/). 
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Identification of Meningitis-Associated Genes 
Scientific literatures that have been reported for meningitis-associated genes in Mtb were 

extensively reviewed and collected. 63 putative genes were revealed in articles from Av-Gay and Everett 
(2000), Pethe et al. (2001), Tsenova et al. (2005), Jain et al. (2006), Be et al. (2008), Be et al. (2012) and 
Haldar et al. (2012). The amino acids of these 63 putative genes were compiled and homology studies were 
performed in five other mycobacteria associated with neuropathology, which consists of M. leprae, M. 
lepromatosis, M. bovis, M. llatzerense and M. immunogenum. Homology analysis was performed in the 
proteins reported to be associated with Streptococcus pneumoniae, Escherichia coli K-1 and Neisseria 
meningitidis. 141 proteins have been reported to be associated with Streptococcus pneumoniae by Orihuela 
et al. (2004), Molzen et al. (2011) and Mahdi et al. (2012). On the other hand, 164 virulence genes derived 
from Neisseria meningitis were reported by Hao et al (2011). Finally, the neurotropic genes reported by 
Pouttu et al. (1999), Huang et al. 2001 and Yao et al. (2006) which confer tissue tropism in Neisseria 
meningitis and E. coli K1 were reviewed and tabulated. 
 
Verification of Putative Findings from WGS analysis 

Six putative genes (Rv3425, Rv1141c, Rv0311, Rv3344c, Rv2606c and Rv2397c) identified in 
CSF strains were randomly selected to be verified using PCR-sequencing. The PCR primers used in this 
study are listed in Table 1. These primers were designed based on the sequence of the reference H37Rv 
genome retrieved from the TubercuList website (https://tuberculist.epfl.ch/). PCR primer pairs were 
designed with similar melting temperatures (Tm ± 2 °C), low probability of forming thermo-stable 
secondary structures and homo-dimers in particular, under PCR annealing conditions as determined by 
Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), and synthesized by 1st BASE 
Laboratories (Singapore). 
 
Table 1 Oligonucleotide primers used to verify 6 putative meningitis-associated genes found in the in silico 
study. 

No Primer Sequences Size (bp) Tm (°C) Amplicon size 
(bp) 

1 Rv3425 Fwd ATGCATCCAATGATACCAGCG 21 58.8 531 
2 Rv3425 Rev CTACCCGCCCCTGTAGATC 19 58.7  
3 Rv1141c 

Fwd 
ATGCCAGATTCCGGGATTGC 20 60.8 807 

4 Rv1141c Rev TCAGGAACCGGTGAAGTTGG 20 59.9  
5 Rv3344c 

Fwd 
GCACAGGCCAGTCCGGCG 18 66.4 1455 

6 Rv3344c Rev TCAGGGTGTTGCGCCGGC 18 65.9  
7 Rv0311 Fwd AGCTGGCAGTTCTGTTACCC 20 57.4 556 
8 Rv0311 Rev CAGGTGGCAGCTTTGGTTTC 20 57.1  
9 Rv2606c 

Fwd 
ATGGATCCTGCAGGTAACCC 20 56.8 900 

10 Rv2606c Rev TCACCAGCCGCGCTGGGCGA 20 69.6  
11 Rv2397c 

Fwd 
TCGGATTCGTCTTCCAGCAC 20 57.2 471 

12 Rv2397c Rev AGAAGGACATCACGAAGGCG 20 57.2  
 
Each PCR reaction consisted of 12.5 μL master mix (GoTaq Green Master Mix; Promega), 2 μL of each 
forward and reverse primers, 1 μL DNA template and distilled water in a total volume of 25 μL. The 
thermal cycle procedure was based on a three-step cycling procedure: initiated with pre-denaturation at 
95°C for 2 min, followed by 30 cycles of denaturation at 95°C for 45 s, primer annealing temperature, 
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56.1°C to 60.2°C for 30 s, and extension at 72°C for 2 min. Finally, the PCR process was ended by a final 
extension at 72°C for 5 min. When the reaction was completed, 5 μL of the PCR amplicons were analysed 
by agarose gel electrophoresis. The amplicons were then purified and subjected to DNA sequencing using 
forward and reverse primers. 
 
4.  Results and Discussion 

Whole genome sequence (WGS) analysis gained popularity owing to the availability of next 
generation DNA sequencing platforms, large datasets easily accessible from public databases and advanced 
bioinformatics tools (Hui, 2014; MacLean, Jones, & Studholme, 2009; Metzker, 2010; Morozova & Marra, 
2008). Genetic information from WGS analysis is often used to assess population natural variation and 
predict host-pathogen relationships including virulence, immune modulation and response to therapy (Ford 
et al., 2012). Primary analysis such as filtering and trimming the sequences was performed to improve the 
data quality. Data metrics were generated to measure the data quality. These metrics were included in the 
secondary analysis using CLC Genomics Workbench (Qiagen Inc., Netherlands). 
 
Genome Data Trimming and Assembly 

The genomes of eight CSF strains showed approximately 55X to 92X sequencing coverage. The 
detailed statistical measurements of the genomes after assembly are shown in Table 2. 
 
Table 2 Statistical measurements of the UM-CSF genomes. 

Strain N50 No. 
contigs 

No. 
scaffolds 

Reads used 
(%) 

Scaffold 
genome Size 
(bp) 

No. protein 
CDS 

CSF01 36,496 315 234 96.67 4,282,569 4271 
CSF04 98,670 140 136 93.09 4,392,768 4323 
CSF05 74,553 182 138 97.56 4,338,921 4190 
CSF06 83,364 135 127 87.01 4,371,105 4310 
CSF08 91,928 174 156 93.77 4,352,163 4353 
CSF09 122,404 133 103 89.71 4,355,856 4291 
CSF15 91,928 129 126 94.05 4,374,121 4313 
CSF17 122,408 131 111 90.99 4,356,783 4308 

 
Proteins Reported to be Associated with Meningitis in Mtb 

Of 63 proteins reported for Mtb (Av-Gay & Everett, 2000; N. A. Be et al., 2012; N A Be et al., 
2008; Jain, Paul-Satyaseela, Lamichhane, Kim, & Bishai, 2006; Pethe et al., 2001; Tsenova et al., 2005), 
homologs of 56–60 were found in CSF strains but only two, Rv0311 encoding a hypothetical protein and 
Rv0619 encoding a probable galactose-1-phosphateuridylyltransferase GalTb), were found in all eight CSF 
strains. This suggests that these possibly neurotropic genes are not universally present in Mtb causing CNS 
disease. On the other hand, a similar search was performed in five other mycobacteria that are associated 
with neuropathology. These comprised M. leprae and M. lepromatosis that cause different forms of leprosy, 
M. bovis that is usually linked with extra-pulmonary TB, and two rapid-growers M. llatzerense and M. 
immunogenum that had been isolated from a case of brain abscess (Greninger et al., 2015). Fifty-six 
homologs of the 63 meningitis related genes from Mtb were identified in M. bovis, followed by 16 in M. 
leprae, 15 in M. lepromatosis, 14 in M. llatzerense, and 11 in M. immunogenum. The CSF strains shared 
four of the 63 meningitis-related genes (Rv0014c, Rv1837c, Rv2176 and Rv0984) with all five of these 
mycobacterial species and five other genes (Rv1273c, Rv2318, Rv0983, Rv0966c and Rv0805) with the 
three slow-growing mycobacteria. The Rv2947c (pks 15/1) gene was found in the CSF strains, M. leprae 
and M. ilatzerense. In the Beijing genotype of Mtb, an intact pks 15/1 is believed to be responsible for 
virulence and extra-pulmonary disease (Reed et al., 2004). Consistent with their extra-pulmonary (CNS) 
location in the host, five of the eight UM-CSF strains were genotyped as Beijing ST1 and each carried an 
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intact pks 15/1 gene. This seems to suggest that there might be common genetic traits in mycobacteria that 
are responsible for diseases of the nervous system (central and peripheral) in human. 
 
Meningitis-Associated Genes from Other Bacterial Pathogens 

Streptococcus pneumoniae, Escherichia coli K-1 and Neisseria meningitidis are pathogens known 
to cause meningitis in humans. Of 141 proteins reported to be associated with S. pneumoniae meningitis 
(Mahdi, Wang, Van Der Hoek, Paton, & Ogunniyi, 2012; Molzen et al., 2011; Orihuela et al., 2004), three, 
Rv1699 (CTP synthase PyrG), Rv2606c (pyridoxine biosynthesis protein SnzP) and Rv0357c 
(adenylosuccinate synthetase PurA) were found in the CSF strains. These genes showed 51 – 68 % 
sequence similarity with their homologs in S. pneumoniae but were identical in all CSF strains and H37Rv, 
in protein sequence as well as globularity. When compared against 164 N. meningitidis virulence genes 
reported by Hao et al. (2011), CSF strains shared two virulence homologs with this neuro-pathogen: 
Rv2457c, encoding ATP-dependent CLP protease ATP-binding subunit clpX and Rv2397c, encoding 
sulfate-transport ATP-binding protein ABC transporter CysA1 (Hao et al., 2011). The genes for cell surface 
outer membrane Opa and Opc proteins that were previously reported to confer tissue tropism in N. 
meningitides (Virji, Makepeace, Ferguson, Achtman, & Moxon, 1993) were not found, neither were 
homologs of previously reported E. coli K1 neurotropic genes such as IbeA, IbeB, AslA, YijP, and OmpA 
(Huang & Jong, 2001; Pouttu et al., 1999; Yao, Xie, & Kim, 2006), in CSF strains.  

However, the five genes associated with S. pneumoniae and N. meningitidis meningitis was also 
found in many respiratory Mtb. The detection of common homologs in neuro-pathogens from different 
bacterial taxa raises speculations on the existence of a pan-bacterial mechanism of CNS infection. Although 
it was disappointing to find that many of the possibly neurotropic traits in the CSF strains were also found 
in respiratory Mtb, this finding is consistent with the observation by other workers that many virulence 
genes are conserved in non-pathogenic bacteria. For instance, all four mce operons in the genome of Mtb 
(Kumar, Bose, & Brahmachari, 2003) have been found in both pathogenic and non-pathogenic 
mycobacteria (Chitale et al., 2001; Haile, Caugant, Bjune, & Wiker, 2002). CLP proteases on the whole, are 
common in many bacterial spp. (De Mot, Nagy, Walz, & Baumeister, 1999). The ABC transporter complex 
involved in sulfate/thiosulfate import is found in pathogens as well as environmental bacteria (Szklarczyk et 
al., 2015). Many designated virulence genes in N. meningitidis were also found to be present in non-
pathogenic species such as N. lactamica (Snyder & Saunders, 2006). All these observations suggest that 
pathogenic bacteria have adapted their genomes from a free lifestyle to the intracellular environment with 
minimal acquisition of exclusive virulence genes (Forrellad et al., 2013). 
 

Figure 1 summarizes the next generation sequencing (NGS) findings of 17 meningitis-associated 
genes that are found in the eight CSF Mtb strains, M. leprae and M. lepromatosis, M. bovis and two rapid 
growers M. Ilatzerense and M. immunogenum, together with pathogens known to cause meningitis in 
humans, Streptococcus pneumoniae and Neisseria meningitidis. 
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Figure 1 Venn diagram showing the number of meningitis-associated genes that are shared between the 

CSF Mtb strains, mycobacterial and non-mycobacterial neuro-pathogens. 
 
Verification of Putative Findings in UM-CSF Strains 

While next-generation sequencing technologies have brought many advantages to genomic 
research, the chain-termination method of DNA sequencing remains widely used, especially for the 
validation of WGS findings. Sanger sequencing is preferred for the sequencing of single genes as it is cost-
effective. It is used to verify sequences for site-directed mutagenesis or the presence of cloned inserts and it 
is less error-prone than NGS (Biotech, 2018; Thermo Fisher Scientific, 2014). Thus, PCR-sequencing 
assays were used to verify the existence of six putative genes identified in the Mtb genomes from CSF. 
These genes represent different types of sequence variations predicted. They were three genes (Rv3425, 
Rv1141c, Rv3344c) with putative deletions, one gene (Rv0311) with a non-synonymous (ns)-SNP, and two 
homologues genes (Rv2606c, Rv2397c) reported to be associated with S. pneumoniae and N. meningitides 
meningitis. Of the six genes studied, the verification of Rv3344c and Rv0311 variations in the CSF samples 
was successful (Figure 2). The sequence obtained for Rv3344c indicated that the smaller than predicted 
PCR product size (825 bp instead of 1455bp) was probably due to multiple deletions. The result of the 
Rv0311 verification showed the converse. The G-T SNP in the gene was predicted in all eight CSF strains 
used but was confirmed only in five of them, indicating a possible sequencing error in the other three strains 
(Figure 2). BLASTN and BLASTX analysis (Table 3) shows the 825 bp sequence to be a putative PPE 
family protein similar to a sequence reported from a Mtb isolate from the human brain (Husain et al., 2017). 
 

  
Figure 2 Nucleic acid alignment of: (left) Rv3344v in CSF01. The red letters in H37Rv (position 490 to 
529) were predicted to be deleted in UM-CSF01; (right) Rv0311 in eight CSF samples. G to T SNP was 
observed in nucleotide position 357 in 5 samples: UM-CSF01, 05, 08, 09 and 17. 
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Table 3 BLASTN and BLASTX results of Rv3344c gene amplified from CSF01 sample. 
Gene/BLAST 
variants 

BLASTN BLASTX 
Description E-

value 
Identity Description E-

value 
Identit

y 
Rv3344c in CSF01 Mtb strain C3 (Brain: 

India) 
0.0 99 % PPE family 

protein 
3e-87 100 % 

 
The meningitis-associated genes in S. pneumoniae and H. influenzae, Rv2397c and Rv2606c, were 

verified in all UM-CSF isolates and H37Rv. All these genes and sequences are related to the PPE protein 
family known to comprise important immune-related proteins that play important roles in mycobacterial 
antigen variation, the host immune suppression system, and the synthesis of bacterial walls with high 
degrees of hydrophobicity. Further investigations are necessary with larger numbers of Mtb genomes from 
CNS isolates to be compared with respiratory isolates, and functional studies of these genes are necessary to 
explore the effect of the genetic differences identified in CNS but not respiratory strains of Mtb. 
 
5.  Conclusion 

The detection of common meningitis-associated genes in mycobacterial and non-mycobacterial 
neuro-pathogens raises speculations on the existence of a pan-bacterial mechanism of CNS infection. 
However, all the genes shared by our CSF Mtb strains and other neuro-pathogenic bacterial spp. were also 
found to be common in the respiratory Mtb genomes we examined. This finding suggests that CNS 
infection in TB is more likely to be directed by the expression of multiple virulence factors selected by the 
interaction between pathogen and host immune responses, rather than the presence of specific genetic traits. 
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