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Abstract

With small sizes and lower cost, accelerometers and gyroscopes in the form of MEMS unit have been widely
used in many diverse areas of applications involving detections of motion, vibration, attitude of various airborne
objects, and health monitoring. Each sensor has systematic and parasitic errors that affect its output accuracy, and thus
limit its functioning when it is used individually. Both sensors may be fabricated on the same silicon die known as the
inertial measurement unit (IMU). When put to use together in an application, appropriate data fusion technique is an
issue that must be considered for more efficient implementation. This paper aims to 1) present a unified concept of
complementary filters together with outline of IMU data fusion sequence followed by the technique used in a classical
Kalman filter as a comparison; 2) present an example which demonstrates the overall performance of both filter types.
By using block diagrams with a flow coding of data processing sequence, the operation by the complementary filter can
be compared and contrasted with that of Kalman filter more easily. A simple example from a separate source
demonstrates that a complementary filter can offer an overall output result comparable to that of Kalman filter with an
additional speed and simplicity advantage. In this case all the filter gains are constant. The general structures of the
complementary filter and the Kalman filter have been shown and their performances are demonstrated. It is noted that
in the low-noise case, the complementary filter can simply be a weighted-average, constant-gain filter, but for high
noise variances, a more suitable low-pass and high-pass filter design should be considered.
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1. Introduction

Accelerometer and gyroscope are two instruments that are used to measure acceleration and
angular velocity. Alternatively that means the measurement of position, orientation, and velocity of moving
objects. With the improvement of micro-electro-mechanical systems (MEMS) technology, the two
instruments have been fabricated into sensors residing in a single, miniaturized silicon substrate. These two
sensors form the basic inertial measurement unit (IMU) which may include other sensors such as
magnetometers. With its low cost and small size, many functions that an IMU offers have found many
applications such as gesture commands for applications and control in smartphones, enhanced gaming,
augmented reality, pedestrian and vehicle navigation, health and fitness monitoring, to name a few. An
example of a MEMS-based IMU that combines a 3-axis gyroscope, a 3-axis accelerometer, and additional
features such as temperature sensor and Digital Motion Processor™ (DMP) in a single 4x4x0.9mm package
is MPU-6050 from InvenSense as shown in Figure 1.

MPU-6050 IMU chip
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Figure 1 MPU-6050 MotionTracking™ device in a 4x4x0.9mm package

(courtesy of InvenSense and Sparkfun Electronics, USA).

Due to the fabrication constraints, the MEMS-based IMU is subjected to various errors and usually needs
calibration before use. For the IMU consisting of tri-axis accelerometer and tri-axis gyroscope, the two
sensors may be modelled as

‘a=K, a+b, +v, (1a)
‘w=K, d+b,+v, (1b)

where °a, ‘@ are the measured vectors of the tri-axis accelerometer sensor and the tri-axis gyroscope
sensor respectively; & is the 3x1 vector of total acceleration, consisting of the gravity and the acceleration
due to sensor-body movement; @ is the true angular velocity 3x1 vector of the sensor. K, K, are the

diagonal scale-factor matrices. b, and b, are bias vectors; v, and vy are assumed uncorrelated white
Gaussian measurement noise with zero means. The above equation is a simplified model which does not
take into account the cross-axis sensitivity, cross-coupling, and misalignment (Sabatini, 2006).

The accelerometer gives the x-y-z acceleration component values which basically can be used to
calculate inclination angles, and therefore it may be initially considered sufficient. However the
acceleration is caused by both gravitation and by movement of the device. As a result, even if the
accelerometer is in a relatively stable state, it is still very sensitive to vibration and mechanical noise in
general. The gyroscope measures the rate of change of angle along the x-y-z axes and can be used to smooth
out these accelerometer errors. However gyroscopes have drift which will cause large error even after being
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used for a short period. Nevertheless by properly combining data that comes from both accelerometer and
gyroscope, one can obtain a relatively better estimate of current device inclination than what one would
obtain by using the accelerometer data alone.

The literature on fusing accelerometer and gyroscope data is abundant (OlliW, 2013). Data may be
fused using simply weighted average, or by complementary filter (Colton, 2007); the latter can have many
extensions (Mahony et al., 2005), (Mahony et al., 2008), (Euston et al., 2008). Linear Kalman filter (KF)
and their extended version (EKF) is more traditional and well established, but is usually more complicated
and requires high computational effort (Sabatini, 2006). Mahony filter (Mahony et al., 2008), and
Madgwick filter (Madgwick et al., 2011) are two separately introduced filters with similar results. The latter
two are recently gaining more interest among hobbyists. Comparisons among these filters have been
attempted in various aspects and many similarities among them have been brought up (Higgins, 1975),
(Giacomel, 2011). It was also pointed out that the complementary filter and Kalman filter in basic case can
lead to identical updated equations (OlliW, 2013).

In the following part of this paper the basic concept of data fusion will be described and its
implementation based on data obtained from the commercially available chips, i.e., ADSL 335 triple-axis
accelerometer and a compatible gyroscope will be given.

2. Objectives

The objectives of the paper are: firstly, to present a clear concept of data fusion for the IMU
(consisting of accelerometer and gyroscope) and simple analysis of a complementary filter together with a
theoretical comparison with an established Kalman filter. Secondly, to present concisely both in a generic
script and a chart form the software implementation of a complementary filter at the chip-interface level
based on a low-cost and generally available IMU. Thirdly, to present a brief, comparative result
demonstrating the performance of both types of filters for an angle measurement. Conclusions and
suggestions are finally given.

3. Materials and methods
3.1 Complementary filter

The basic idea of complementary filter is shown in Figure 2 below where x and y are noisy
measurements of some signal z and 7 is the estimate of z produced by the filter.

X 1-G(s)
.\
2
Y G(s) '
—_—

Figure 2 Basic complementary filter.

If G(s) is a low-pass filter, then 1-G(s) is a high-pass filter. This is the basic form (Higgins, 1975) which
can be implemented differently depending on G(s) and how it is discretized. In a slightly simplified version
of the complimentary filter, the data from gyro and accelerometer are combined simply by the weighted
average concept without regard to the type of noises appeared in the data from the two sensors. This is
shown in the following block diagram.
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VzeroRate
Gyro + mV T
output 1/Sensitivitygyro P G(z) = 17 —» W
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P 1/Sensitivityac > 1-w
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Figure 3 Block diagram of the basic complementary with indicated values and units.

The calculation steps involved are explained based on the ADSL335 3-axis accelerometer and a
compatible gyroscope as follows:

Let Racc = [RxAcc, RyAcc, RzAcc] be the inertial force vector as measured by accelerometer that consists
of the following components:

RxAcc = (AdcRx * Vref/1023 — VzeroG)/Sensitivity (2a)
RyAcc = (AdcRy * Vref/1023 — VVzeroG)/Sensitivity (2b)
RzAcc = (AdcRz * Vref/1023 — VVzeroG)/Sensitivity (2¢)
where

AdcRx, AdcRy, AdcRz = values read from three channels of the ADC module assuming to have
10 bits.

Vref = reference voltage of the ADC module, assuming it is 3.3V
VzeroG = voltage corresponding to 0g, assuming it is 1.65V
Sensitivity = accelerometer sensitivity, usually expressed in mV/g (= 478.5)
Note that
|Racc| = SQRT(RxAcc"2 + RyAcc”2 + RzAcc2) (3)
In the normalized form,
Racc(normalized) = 1 = [RxAcc/|Racc|, RyAcc/|Racc|, RzAcc/|Racc|] 4)
Let Racc = current reading from accelerometer
Rgyro = value obtained from Rest(n-1) and current gyro readings
Hence
Rest(n) = (Racc*wl + Rgyro*w2)/(w1l+w2) (5)
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Dividing both numerator and denominator of the fraction by w1,
Rest(n) = (Racc*wl/wl + Rgyro*w2/wl)/(wl/wl+w2/wl)

= (Racc + Rgyro*wgyro)/(1 + wgyro) (6)

Hence

RxEst(n) = (RxAcc + RxGyro*wGyro)/(1 + wGyro) (78)

RyEst(n) = (RyAcc + RyGyro*wGyro)/(1 + wGyro) (7b)

RzEst(n) = (RzAcc + RzGyro*wGyro)/(1 + wGyro) (7c)
Let these be normalized again:

R = SQRT(RxEst(n)2 + RyEst(n)*2 + RzEst(n)"2) (8)

RxEst(n) = RxEst(n)/R (9a)

RyEst(n) = RyEst(n)/R (9b)

RzEst(n) = RzEst(n)/R (9c)

Then the angle of inclination can be found from

CosX =cos(Axr) = RxEst(n) (10a)

CosY =cos(Ayr) = RyEst(n) (10b)

CosZ =cos(Azr) = RzEst(n) (10c)

Notice that the two weights w1l and w2 are implemented, and this is basically chosen on an
experimental basis. The data flow and computational steps are visualized in the following Figure 4.
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Read Data Input from 10-bit ADC (assumed)

Accelerometer Gyroscope
[AdcRx, AdcRy, AdcRz]" [AdcGyroXz, AdcGyroYZ]"
RxAcc=(AdcRx*Vref/1023-VzeroG)/Sensitivity RateAxz=(AdcGyroXZ*Vref/1023-VzeroRate)/Sensitivity
etc. etc.

[RateAxz, RateAyz]T
[RxAcc, RyAcc, RzAcc]” M

Axz(n)=Axz(n-1)+RateAxzAvg*T
Ayz(n)=Ayz(n-1)+RateAyzAvg*T

i

RxGyro=sin(Axz(n)/SQRT(1+cos(Axz(n))*2*tan(Ayz(n))"2)
RyGyro=sin(Ayz(n)/SQRT(1+cos(Ayz(n))*2*tan(Axz(n))"2)
RzGyro=sign(RzGyro)*SQRT(1-RxGyro”"2-RyGyro”2)

Weight Average Estimate:
RxEst(n)=(RxAcc+RxGyro*wGyro)/(1+wGyro)
etc.

Initialization:
Rest(0)=Racc(0)

Normalized:
RxEst(n)=RxEst(n)/R
etc.
[cosX,cosY,cosZ] =[RxEst, RyEst, RzEst]"

Angle of Inclination X, Y, Z

Figure 4 Data flow and computational steps for accelerometer and gyro data fusion.
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3.2 Kalman filter
The Kalman filter that is implemented on the similar platform can be displayed in the following
block diagram in Figure 5.

Process
noise

}

Gyro + u A A
output—>‘< ) Xiger = AX g + Bug

\ 4

+

o

C
Measurement
noise o
X kk-1
Accelerometer v + - v+ 4
output * /[ O\ Yk N o | klk
\_/ T\ /‘ .k \_/
Innovation
Yi— C)?klk-l
Figure 5 IMU Data fusion using Kalman filter.

The sensor model for each axis is proposed as follows:
X, = Ax +BU, (11a)
Y, =Cx_+V, (11b)

which can be expressed as
{alpha} _{1 dt}{alpha} J{dt}u (12a)
. ~~ . k
bias |, [0 1| bias | |0
alpha (12b)
=1 0 +V
V=l ]{ bias } ‘

It is shown here that Kalman filter has u, (the measured gyro output in degree/s) and Y, (the
measured accelerometer output in degree) as filter inputs, and the estimated state X, as its output in
degree. Noises are embedded in U, with noise covariances and unit conversions are to be taken care of
separately and appropriately. The above equations are to be dimensionally extended to all three axes
belonging to each sensor.

4. Results and Discussion

It can be seen that the computation work load and level of complexity of the two filters were quite
different. For complementary filter, two weights, wl and w2 were required for adjustment. For Kalman
filter, process and measurement noise covariances, including second moment of states were all to be
estimated and experimented with. Few assumptions were made that they were constant and the modelling
was accurate. For comparative study of the two filter performances, a separate result (Giacomel, 2016) is
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presented here as shown in Figure 6. The values shown are the angles between two axes x and y in a single
plane when the rotation was made around z-axis of the two sensors that were aligned.

Kalman filter

Complementary
filter 4

Accelerometer

Figure 6 A performance comparison of the complementary filter and Kalman filter.

It can be observed that in the overall, both filters behave very similarly, with Kalman filter
responses slightly slower than complementary filter. The result also shows that the accelerometer is very
sensitive to the vibrations that occurs near the middle of the experiment whereas the gyrocope is very
immune to such disturbance. These observations are in line with others that were reported in literatures.

6. Conclusion

The general structures of the complementary filter and the Kalman filter have been shown and the
performances of both filters were demonstrated. In the case as demonstrated in Figure 3 only a constant
gain was considered, i.e., G(s) = w and this should be sufficient in low-noise case. However if the noise in
the relevant signal is mostly high frequency, then G(s) is to be made as a low-pass filter to filter out high-
frequency noise and then 1— G(s) is the complement, i.e., a high-pass filter (Higgins, 1975). In such case the
filter design may become an issue that leads to complicated situation similar to that in the implementation
of Kalman filter where the noise statistics and system modeling are to be considered more elaborately.
Since complementary filters can be configured differently from what has been described, further
improvement may be possible and that will probably depends on intuitive knowledge of each individual
application.
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