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Abstract 

Predicting stock returns is one of the most fascinating problems in finance. However, predicting stock returns 

is also one of the most challenging problems due to the instability and noisy nature of stock returns. One of the promising 

directions to handle both problems is to use a panel break model. Recently, a panel common break model has been 

proposed and has been shown to generate superior predictive performance. However, the model assumes that every 

parameter breaks simultaneously, which is not aligned with empirical data. In this article, we propose a novel panel break 

model that addresses the main limitation of the common break model while still retaining its main advantage by allowing 

each type of parameter to break separately. Moreover, our model allows correlated breaks between each parameter type 

through a common hidden time-varying break probability. We evaluated its performance on the top 100 largest US stocks 

from January 2002 to December 2021. The results show that our model provides improved performance when stocks 

experience a series of extreme returns, as our model is quite sensitive to data. On one hand, this can be helpful for faster 

detection of high-impact breaks during crises. On the other hand, it can result in too many false detections. Further model 

restrictions and the use of more data may further improve the model’s performance. 

 

Keywords: Bayesian Panel Break Model, Stock Return Prediction, Structural Break, Parameter Instability  

 

1.  Introduction 

Stock return prediction has long been a topic of interest. However, many predictive models suffer 

from poor out-of-sample performances. Model instability is one of the main problems with such models. A 

series of models have been proposed to overcome this problem. One difficulty is detecting breaks in the model 

parameters in a timely and accurate manner.  In this paper, we propose a novel predictive model that improves 

on the existing models.   

Predicting stock returns is one of the most fascinating problems in finance. For practitioners, 

predicted stock returns could serve as inputs for making diverse financial decisions. The problem is also 

highly relevant for academics. A deeper understanding of the nature of stock return predictability could guide 

researchers to discover a more realistic market equilibrium model, which could lead to a more effective test 

for market efficiency. 

However, predicting stock returns is also one of the most challenging problems. Although a large 

body of literature suggests that a variety of financial and economic variables could be used to predict stock 

returns ex-post, Welch and Goyal (2008) show that forecasting stock returns based on a variety of the earlier-

proposed financial and economic variables using a constant parameter predictive regression model fails to 

reliably deliver superior out-of-sample performance relative to the simple historical average benchmark in 

terms of the mean squared prediction error. 

The model's poor out-of-sample performance could be attributed to instability in the predictive 

model. Various studies have documented evidence of parameter instability in a predictive regression for a 

mailto:bumnuttapat@gmail.com


 

RSU International Research Conference 2024 

https://rsucon.rsu.ac.th/proceedings                                26 APRIL 2024 

 

[309] 

 

Proceedings of RSU International Research Conference (RSUCON-2024) 

Published online: Copyright © 2016-2024 Rangsit University 

 

wide range of predictors (Farmer et al., 2023; Georgiev et al., 2018; Lettau and Van Nieuwerburgh, 2008; 

Pettenuzzo and Timmermann, 2011; Pitarakis, 2017; Rossi, 2021; Smith and Timmermann, 2022; Tu and 

Xie, 2023; Zhu et al., 2022).  

Building on the growing evidence of instability, many researchers have proposed a variety of 

approaches to formally account for instability to, hopefully, find a successful predictive model (Dangl and 

Halling, 2012; Farmer et al., 2023; Guidolin and Timmermann, 2007; Henkel et al., 2011; Johannes et al., 

2014; Smith and Timmermann, 2021; Smith and Timmermann, 2022; Tu and Xie, 2023). However, most of 

the early models utilize only time-series information, making it quite hard to timely and precisely detect 

breaks in the noisy environment of stock markets. 

One promising way to overcome this problem is to use a panel break model to exploit both time-

series and cross-sectional information simultaneously.  Smith and Timmermann (2021) introduce a panel 

break model, which assumes that a break can simultaneously affect every parameter of every stock in the 

sample. However, their result also shows that a break in any parameters in the model tends to force the model 

to identify that all of the other parameters are also hit by the break on that date, resulting in detecting the 

excessive number of breaks. This suggests that the assumption that a break simultaneously hits every 

parameter might be too strict. 

The main contribution of this article is to propose a novel panel break model that addresses the main 

limitation of the common break model while still retaining its main advantage. We achieve this by partially 

relaxing the common break assumption of Smith and Timmermann (2021). Specifically, we assume that each 

type of parameter can break separately. However, we still assume that parameters of the same type for every 

stock break simultaneously. Moreover, our model allows breaks in each type of parameter to be dependent 

on each other by assuming that every type of parameter shares the same hidden time-varying break 

probability, allowing information regarding break dates between each type of parameter to be utilized. 

 

2.  Objectives 

The objectives of this study are  

1) To propose a novel model that addresses the main limitation of the Smith and Timmermann (2021) 

model, 

2)  To evaluate the proposed model's out-of-sample predictive performance on large US stocks. 

  

3.  Materials and Methods 

3.1 Model 

 We propose a Bayesian panel change-point model that relaxes the common break assumption across 

all parameters of Smith and Timmermann (2021) while still retaining the benefit of assuming that a break hits 

all stocks simultaneously to utilize both cross-sectional and time-series information. In this model, we assume 

that every type of regression parameter shares the same time-varying break probability. Parameters of the 

same type from every stock are assumed to always break together, while parameters from different types are 

assumed to break separately. Furthermore, we follow Smith and Timmermann (2021) by introducing the 

observable common factor 𝑓𝑡 to model cross-sectional dependency among individual stocks. This allows us 

to parsimoniously account for cross-sectional covariance instead of relying on a highly parameterized 

approach that directly assumes a full covariance matrix. To be precise, we assume that the excess return of 

stock 𝑖 at time 𝑡, or 𝑟𝑖,𝑡, follows the following equation: 

𝑟𝑖,𝑡 = 𝜃𝑖,0,𝑡 +∑

𝑝

𝑗=1

𝜃𝑖,𝑗,𝑡𝑥𝑗,𝑡−1 + 𝜃𝑖,𝑓,𝑡𝑓𝑡 + √𝜃𝑖,𝜎,𝑡𝜖𝑖,𝑡 
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where 𝑥𝑗,𝑡−1 is the 𝑗th predictor at time 𝑡 − 1, 𝜖𝑖,𝑡 ∼ 𝑁(0,1) is the independent error term of stock 𝑖 at time 𝑡, 

and 𝜃𝑖,𝑗,𝑡 is the type-𝑗 regression parameter of stock 𝑖 at time 𝑡.  

Following Maheu and Song (2018), breaks in type-𝑗 parameters are parameterized using the regime 

duration 𝑑𝑗,𝑡. The time when the regime duration is reset to one, 𝑑𝑗,𝑡 = 1, corresponds to the time when type-

𝑗 parameters break and, thus, the new type-𝑗 parameters are drawn from the type-specific distribution 𝐹𝑗, 

while the time when the regime duration is increased by one, 𝑑𝑗,𝑡 = 𝑑𝑗,𝑡−1 + 1, corresponds to the time when 

type-𝑗 parameters do not break and, hence, the values of the parameters remain the same for another period. 

More specifically, the type-𝑗 regression parameter of stock 𝑖 evolves as follows: 

𝜃𝑖,𝑗,𝑡 = {~𝐹𝑗, 𝑖𝑓  𝑑𝑗,𝑡 = 1           𝜃𝑖,𝑗,𝑡−1, 𝑖𝑓  𝑑𝑗,𝑡 = 𝑑𝑗,𝑡−1 + 1  . 

At time 𝑡, each type-𝑗 parameter shares the common hidden break probability 𝑝𝑠𝑡 , where the state variable 

𝑠𝑡 is either 1 with probability 𝑝∗ or 2 with probability 1 − 𝑝∗. By assuming that the break probability 𝑝𝑠𝑡  

explicitly depends on the hidden state 𝑠𝑡, we allow correlated breaks across parameter types. 

  To complete the Bayesian model, we specify the following prior distributions: 

𝐹𝑗 = 𝑁(𝑢𝑗 , 𝑣𝑗), 𝑢𝑗 ∈ 𝑅, 𝑣𝑗 > 0,    𝑓𝑜𝑟    𝑗 ∈ 0,1,… , 𝑝, 𝑓, 𝐹𝜎 = 𝐼𝐺(𝑎1, 𝑏1), 𝑎1, 𝑏1 > 0, 𝑝1 , 𝑝2

∼ 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2), 𝑎2, 𝑏2 > 0, 𝑝
∗ ∼ 𝐵𝑒𝑡𝑎(𝑎3, 𝑏3), 𝑎3, 𝑏3 > 0, 

where the underlined variables denote the hyper-parameters of the prior distributions. 

  To summarize, the parameters to be chosen by the authors are {𝑢𝑗, 𝑣𝑗: 𝑗 ∈ {0,1, … , 𝑝, 𝑓, 𝜎}} and 

{𝑎𝑗 , 𝑏𝑗 : 𝑗 ∈ {1,2,3}}, and the parameters and hidden variables to be estimated are 

𝛩 ≔ ⋃𝑗∈{0,1,…,𝑝,𝑓,𝜎}𝛩𝑗, 𝐷 ≔ ⋃𝑗∈{0,1,…,𝑝,𝑓,𝜎}𝐷𝑗, 

𝑆 ≔ {𝑠𝑡: 𝑡 ∈ [2, 𝑇]},  

Ƥ ≔ {𝑝1, 𝑝2, 𝑝
∗} 

where 𝛩𝑗 ≔ {𝜃𝑖,𝑗,𝑡: 𝑖 ∈ ⋃𝜏 𝐼𝜏 , 𝑡 ∈ 𝐵𝑗} is the set of distinct type-𝑗 parameters from every regime 

and every existing stock, 𝐵𝑗 ≔ {𝜏 ≤ 𝑇: 𝑑𝑗,𝜏 = 1} is the set of break dates of type-𝑗 parameters, 𝐷𝑗 ≔

{𝑑𝑗,𝑡: 𝑡 ∈ [2, 𝑇]}, 𝑇 is the time the model is estimated, and 𝐼𝑡 is the set of stocks that can be traded at time 𝑡. 

3.2 Estimation 

The model can be estimated using a Gibbs sampler, which is a Markov chain Monte Carlo (MCMC) 

technique. Each set of parameters or unobserved variables is sequentially drawn from their conditional 

distribution, given all the other parameters and variables. The process is repeated to obtain a sufficiently large 

sample converging to their posterior distribution. Here, the predictors and the observable common factor are 

treated as exogenous variables and are implicitly given in every expression below. The Gibbs sampler consists 

of the following steps: 

1) For 𝑗 ∈ {0, 1, … , 𝑝, 𝑓, 𝜎}, sample 𝐷𝑗  and 𝛩𝑗 from 𝑃(𝑌𝑇 , 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ), where 𝐷∖𝑗 ≔ 𝐷 ∖

𝐷𝑗 , 𝛩∖𝑗 ≔ 𝛩 ∖ 𝛩𝑗 , and 𝑌𝑇 is the set of available excess returns up to time 𝑇. The sampling 

method from Maheu and Song (2018) can be employed. This step can be done by first sampling 

each 𝑑𝑗,𝑡 from 𝑃(𝑌𝑇 , 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ, 𝐷𝑗
𝑡+1), where  
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𝐷𝑗
𝑡+1 ≔ {𝑑𝑗,𝑡+1, 𝑑𝑗,𝑡+2, … , 𝑑𝑗,𝑇},  

𝑃(𝑌𝑇 , 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ, 𝐷𝑗
𝑡+1) = {𝑃(𝑌𝑡 , 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ) 𝑖𝑓 𝑑𝑗,𝑡+1 = 1                                1{𝑘=𝑑𝑗,𝑡+1−1}  𝑖𝑓 𝑑𝑗,𝑡+1

≥  2 , 

and 𝟙 denotes the indicator function. 𝑃(𝑌𝑡 , 𝛩∖𝑗, 𝐷∖𝑗, 𝑆, Ƥ) can be calculated forward in time. 

Given that 𝑃(𝑌𝑡−1, 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ) is already known,  

𝑃(𝑌𝑡 , 𝛩∖𝑗 , 𝐷∖𝑗, 𝑆, Ƥ) can be calculated in two steps as follows:  

𝑃(𝑌𝑡 , 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ) ∝ 𝑃(𝑑𝑗,𝑡 = 𝑘, 𝑌𝑡−1, 𝛩∖𝑗, 𝐷∖𝑗) × 𝑃(𝑌𝑡−1, 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ), 

𝑃(𝑌𝑡−1, 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ) =∑

𝑙

𝑃(𝑑𝑗,𝑡−1 = 𝑙, 𝑠𝑡 , 𝑝𝑠𝑡)𝑃(𝑌𝑡−1, 𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ), 

where 𝑃(𝛩∖𝑗 , 𝐷∖𝑗 , 𝑆, Ƥ) = 1.  

For 𝑗 ∈ {0,1, … , 𝑝, 𝑓},  𝑃(𝑑𝑗,𝑡 = 𝑘, 𝑌𝑡−1, 𝛩∖𝑗 , 𝐷∖𝑗) = 

∏

𝑖

1

√2𝜋𝜃𝑖,𝜎,𝑡𝑣𝑖,𝑗,𝑡 (
𝑥𝑗,𝑡
2

𝜃𝑖,𝜎,𝑡
+

1
𝑣𝑖,𝑗,𝑡

)

𝑒𝑥𝑝

{
 
 

 
 

−
1

2

(

 
 (𝑟𝑖,𝑡 − 𝜇𝑖,∖𝑗,𝑡)

2

𝜃𝑖,𝜎,𝑡
+
𝑢𝑖,𝑗,𝑡
2

𝑣𝑖,𝑗,𝑡
−

(
�̃�𝑗,𝑡(𝑟𝑖,𝑡 − 𝜇𝑖,∖𝑗,𝑡)

𝜃𝑖,𝜎,𝑡
+
𝑢𝑖,𝑗,𝑡
𝑣𝑖,𝑗,𝑡

)

2

𝑥𝑗,𝑡
2

𝜃𝑖,𝜎,𝑡
+

1
𝑣𝑖,𝑗,𝑡 )

 
 

}
 
 

 
 

, 

𝑃(𝑑𝜎,𝑡 = 𝑘, 𝑌𝑡−1, 𝛩∖𝜎 , 𝐷∖𝜎) =∏

𝑖

1

√2𝜋

𝑏
𝑖,𝑡

𝑎𝑖,𝑡

𝛤(𝑎𝑖,𝑡)

𝛤 (𝑎𝑖,𝑡 +
1
2
)

(
1
2
(𝑟𝑖,𝑡 − 𝜇𝑖,𝑡)

2
+ 𝑏𝑖,𝑡)

𝑎𝑖,𝑡+
1
2

, 

𝑢𝑖,𝑗,𝑡 ≔

∑𝜏∈Ŧ𝑖,𝑗,𝑡
�̃�𝑗,𝜏(𝑟𝑖,𝜏 − 𝜇𝑖,∖𝑗,𝜏)

𝜃𝑖,𝜎,𝜏
+
𝑢𝑗
𝑣𝑗

∑𝜏∈Ŧ𝑖,𝑗,𝑡
�̃�𝑗,𝜏
2

𝜃𝑖,𝜎,𝜏
+
1
𝑣𝑗

, 

𝑣𝑖,𝑗,𝑡 ≔
1

∑𝜏∈Ŧ𝑖,𝑗,𝑡
�̃�𝑗,𝜏
2

𝜃𝑖,𝜎,𝜏
+
1
𝑣𝑗

, 

𝑎𝑖,𝑡 ≔
|Ŧ𝑖,𝜎,𝑡|

2
+ 𝑎1, 

𝑏𝑖,𝑡 ≔
1

2
∑

𝜏∈Ŧ𝑖,𝜎,𝑡

(𝑟𝑖,𝜏 − 𝜇𝑖,𝜏)
2
+ 𝑏1, 

�̃�𝑗,𝑡 ≔ {𝑥𝑗,𝑡−1 𝑖𝑓   𝑗 ≠ 𝑓           𝑓𝑡  𝑖𝑓   𝑗 = 𝑓     , 
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𝜇
𝑖,∖𝑗,𝑡

≔ 𝜇𝑖,𝑡 − 𝜃𝑖,𝑗,𝑡�̃�𝑗,𝑡 , 𝜇𝑖,𝑡 ≔ 𝜃𝑖,0,𝑡 +∑

𝑝

𝑗=1

𝜃𝑖,𝑗,𝑡𝑥𝑗,𝑡−1 + 𝜃𝑖,𝑓,𝑡𝑓𝑡 , 

𝑥0,𝑡 is equal to one for any 𝑡, 𝑟𝑡 ≔ {𝑟𝑖,𝑡: 𝑖 ∈ 𝐼𝑡}, and Ŧ𝑖,𝑗,𝑡 ≔ [𝑡 + 1 − 𝑑𝑗,𝑡 , 𝑡 − 1] ∩

{𝜏 ≤ 𝑡 − 1: 𝑖 ∈ 𝐼𝜏} is the set of the time periods from the latest break of type-𝑗 parameters 

to time 𝑡 −  1 when stock 𝑖 is tradable.  

Then, sample 𝛩𝑗 from 𝑃(𝑌𝑇 , 𝛩∖𝑗 , 𝐷), where for 𝑗 ∈ {0,1, … , 𝑝, 𝑓}, 𝑃(𝑌𝑇 , 𝛩∖𝑗 , 𝐷) = 

∏

𝑖

∏

𝑡∈𝐵𝑗

𝑁

(

 
 
∑𝜏∈Ʈ𝑖,𝑗,𝑡

�̃�𝑗,𝜏(𝑟𝑖,𝜏 − 𝜇𝑖,∖𝑗,𝜏)
𝜃𝑖,𝜎,𝜏

+
𝑢𝑗
𝑣𝑗

∑𝜏∈Ʈ𝑖,𝑗,𝑡
�̃�𝑗,𝜏
2

𝜃𝑖,𝜎,𝜏
+
1
𝑣𝑗

,
1

∑𝜏∈Ʈ𝑖,𝑗,𝑡
�̃�𝑗,𝜏
2

𝜃𝑖,𝜎,𝜏
+
1
𝑣𝑗)

 
 
, 

𝑃(𝑌𝑇 , 𝛩∖𝜎 , 𝐷) =∏

𝑖

∏

𝑡∈𝐵𝜎

𝐼𝐺 (
|Ʈ𝑖,𝜎,𝑡|

2
+ 𝑎1,

1

2
∑

𝜏∈Ʈ𝑖,𝜎,𝑡

(𝑟𝑖,𝜏 − 𝜇𝑖,𝜏)
2
+ 𝑏1), 

and Ʈ𝑖,𝑗,𝑡 ≔ {𝜏 ≤ 𝑇: 𝜏 + 1 − 𝑑𝑗,𝜏 = 𝑡} ∩ {𝜏 ≤ 𝑇: 𝑖 ∈ 𝐼𝜏} is the set of the time periods when 

stock 𝑖 is tradable and uses the same type-𝑗 parameter as that at time 𝑡. 

2) Sample 𝑆 from 𝑃(𝑌𝑇 , 𝛩, 𝐷, Ƥ). This can be done by sampling each 𝑠𝑡 from the distribution that 

is proportional to (𝑝
𝑠𝑡
)
|{𝑗:𝑑𝑗,𝑡=1}|

(1 − 𝑝
𝑠𝑡
)
|{𝑗:𝑑𝑗,𝑡≠1}|

(𝑝∗)2−𝑠𝑡(1 − 𝑝∗)1−(2−𝑠𝑡). 

3) Sample 𝑝1 and 𝑝2 from 𝑃(𝑌𝑇 , 𝛩, 𝐷, 𝑆, 𝑝
∗) by sampling each 𝑝𝑘 from 

𝐵𝑒𝑡𝑎(∑{𝑡:𝑠𝑡+1=𝑘} |{𝑗: 𝑑𝑗,𝑡+1 = 1}| + 𝑎2, ∑{𝑡:𝑠𝑡+1=𝑘} |{𝑗: 𝑑𝑗,𝑡+1 ≠ 1}| + 𝑏2). 

4) Sample 𝑝∗ from 𝑃(𝑌𝑇 , 𝛩, 𝐷, 𝑆, 𝑝1, 𝑝2) = 𝐵𝑒𝑡𝑎(|{𝑡: 𝑠𝑡+1 = 1}| + 𝑎3, |{𝑡: 𝑠𝑡+1 = 2}| + 𝑏3). 

After repeating the above steps a sufficiently large number of times, the resulting sample of (𝛩, 𝐷, 𝑆, Ƥ)(𝑛) 
after the burn-in period can be used to approximate the posterior distribution𝑃(𝑌𝑇).  Derivations for each 

Gibbs sampler step are available upon request. 

 

3.3 Prior elicitation 

The hyper-parameters for our empirical application that have their counterparts in Smith and 

Timmermann (2021) are adapted from them. The other hyper-parameters are chosen to represent non-

informative priors. The adapted hyper-parameters are as follows: 

𝑢𝑗 = 0   𝑓𝑜𝑟   𝑗 ∈ {0,1,… , 𝑝, 𝑓}, 

𝑣0 = 0.05
2 × �̂�𝑓

2, 

𝑣𝑗 =
0.042

�̂�𝑗
2 �̂�𝑓

2    𝑓𝑜𝑟    𝑗 ∈ {1, … , 𝑝, 𝑓}, 

𝑎1 = 2,  

𝑏1 = 0.0049, 
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where �̂�𝑓
2
 and �̂�𝑗

2
 are the sample variance of the excess return of the market and that of the 𝑗th predictor using 

the available data at the time the model is estimated, respectively. The other parameters, including 𝑎2, 𝑏2, 𝑎3, 

and 𝑏3, are chosen to be equal to one.  

 

3.4 Evaluation 

 The benchmark model is the equal-weighted combined forecast used by Smith and Timmermann 

(2021) using the four single-predictor common break models. This model will be referred to as the cb-avg. 

The proposed model is evaluated based on its out-of-sample predictive ability. The out-of-sample 

period is from January 2002 to December 2021. During this period, the model is re-estimated monthly using 

the available data of the US stocks listed on the NYSE, AMEX, or NASDAQ that are the top 100 largest 

stocks by market capitalization at the time from January 1982 to the estimation date. Then, the estimated 

parameters will be used to form predictions of the excess returns of the corresponding stocks in the next 

month. Excess returns are computed as returns less the risk-free rate. Specifically, at each time 𝑡, the excess 

return prediction for stock 𝑖 is generated as follows: 

�̂�𝑖,𝑡+1 = �̂�𝑖,0,𝑡 +∑

𝑝

𝑗=1

�̂�𝑖,𝑗,𝑡𝑥𝑗,𝑡 + �̂�𝑖,𝑓,𝑡𝑓𝑡 , 

where �̂�𝑖,𝑡+1 is the predicted excess return of stock 𝑖 at time 𝑡 + 1, 𝑓𝑡 is the average excess return of the 

common factor using the data up to time 𝑡, and �̂�𝑖,𝑗,𝑡 is the average of the type-𝑗 parameter of stock 𝑖 at time 

𝑡 from the MCMC sample after the burn-in period.  

When required, the predicted covariance matrix �̂�𝑡+1 = [�̂�𝑡+1,𝑖,𝑖’] is generated as follows: 

�̂�𝑡+1,𝑖,𝑖’ = �̂�𝑖,𝑓,𝑡�̂�𝑖’,𝑓,𝑡�̂�𝑓,𝑡
2 + 1{𝑖=𝑖’}�̂�𝑖,𝜎,𝑡 , 

where �̂�𝑡+1,𝑖,𝑖’ is the element on the 𝑖th row and the 𝑖′th column of �̂�𝑡+1 and �̂�𝑓,𝑡
2

 is the sample variance of 𝑓 

computed at time 𝑡. The covariance matrix for the cb-avg model is the average of the covariance matrices 

from the four single-predictor common break models, where each covariance matrix of each common break 

model is calculated using the above equation. 

 The model will be statistically and economically evaluated. First, the statistical performance will be 

visually assessed using the modified cumulative sum of squared error difference (MCSSED): 

𝑀𝐶𝑆𝑆𝐸𝐷𝑡 =∑

𝑡

𝜏=1

∑

𝑖

[(𝑟𝑖,𝜏 − �̂�𝐵𝑚𝑘,𝑖,𝜏)
2
− (𝑟𝑖,𝜏 − �̂�𝐴𝑙𝑡,𝑖,𝜏)

2
], 

where 𝑀𝐶𝑆𝑆𝐸𝐷𝑡 is the modified cumulative sum of squared error difference at time 𝑡, and 𝑟𝐵𝑚𝑘,𝑖,𝜏 and 𝑟𝐴𝑙𝑡,𝑖,𝜏 

are the predicted excess return of stock 𝑖 at time 𝜏 from the benchmark model and the evaluated model, 

respectively. The MCSSED is extended from the cumulative sum of squared error difference (CSSED) 

proposed in Welch and Goyal (2008) so that it can handle the case where multiple stocks are evaluated while 

still retaining the key feature of the CSSED. The MCSSED places an equal weight on every stock. This is 

suitable if each stock in the investment universe is relatively equally investable, which holds true in our 

application since our investment universe contains only large market capitalization stocks. The rising value 

of the MCSSED implies that the evaluated model is outperforming the benchmark model in that particular 

period, while the declining value implies that the evaluated model is underperforming the benchmark model 

in that period. This visual tool can reveal whether the relative performance of the evaluated model is stable 
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throughout the entire sample or dominated by a specific set of observations. Moreover, it can uncover which 

periods the evaluated model outperforms and underperforms the benchmark model. It also facilitates 

answering how changing starting or ending dates affects the overall squared prediction error, which can be 

done by shifting the horizontal axis to the desired position. Then, the statistical performance will be formally 

evaluated using the test statistic of Clark and West (2007) that allows for comparing nested models (the CW 

statistic hereafter). To evaluate the economic performance of the model, we follow earlier studies in the stock 

return predictability literature by using  the  utility gain of a small, myopic mean-variance investor with a 

risk-averse coefficient equal to 3 (Campbell and Thompson, 2008; Dangl and Halling, 2012; Rapach et al., 

2010; Smith and Timmermann, 2021). This utility gain can also be interpreted as the certainty equivalent 

return (CER). Hence, the difference in the utility gain between using the evaluated model and the benchmark 

model to guide portfolio decisions can be interpreted as the maximum cost that the investor is willing to pay 

to access the information in the evaluated model. 

  

3.5 Data 

We use monthly excess returns from January 1982 to December 2021 of the US stocks listed on the 

NYSE, AMEX, or NASDAQ that are the top 100 largest stocks by market capitalization in some months 

during the period from January 2002 to December 2021. The return data are obtained from the CRSP 

database, while the risk-free rate data are obtained from the updated data of Welch and Goyal (2008) from 

Amit Goyal’s website (Goyal, n.d.). Following Smith and Timmermann (2021), we use the monthly 

predictors from Welch and Goyal (2008). The predictors include the aggregate dividend-price ratio (dp), the 

Treasury-bill rate (tbl), the term spread (tms), and the default spread (dfy). All the predictors are constructed 

as in Welch and Goyal (2008). To be more precise, dp is the log of 1-year moving sums of dividends paid on 

the S&P 500 index minus the log of the index's prices; tbl is the 3-month Treasury Bill rates; tms is the yields 

on long-term government bonds minus the Treasury-bill rates; and dfy is the yields on BAA-rated corporate 

bonds minus the yields on AAA-rated corporate bonds. The observable common factor is the value-weighted 

market portfolio’s monthly excess return. The predictor and the market portfolio data are obtained from the 

updated data on Amit Goyal’s website. Welch and Goyal (2008) used the original dataset, and the website 

provides its updated version.  The datasets consist of the market portfolio’s returns, the US risk-free rate, and 

the data to construct the predictors. 

 

4.  Results and Discussion  

4.1 Results 

Figure 1 shows the MCSSED of the proposed model relative to the cb-avg model over the out-of-

sample period. As we can see, the plot has a general downward trend, suggesting that the proposed model 

consistently underperforms the cb-avg model for most of the out-of-sample period except only during mid-

2009, when the plot has an upward trend. This result seems to suggest that our model tends to perform better 

during a crisis period. In Section 4.2, we investigate this observation in more detail. 
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Figure 1: The MCSSED of the proposed model relative to the cb-avg model 

 

Next, the statistical performances are formally evaluated using the CW statistic. To lower the chance 

of having spurious results, we follow Smith and Timmermann (2021) by using only stocks with at least 60 

data points during the out-of-sample period to evaluate results. This includes a total of 130 stocks.  Table 1 

shows the number of stocks that have values of the test statistic within each interval, with the percentage of 

the total number of stocks shown in parentheses below. Each interval can be interpreted as the proposed 

model significantly underperforms (𝑡 ≤ −1.64), insignificantly underperforms (−1.64 < 𝑡 ≤ 0), 

insignificantly outperforms (0 < 𝑡 ≤ 1.64), and significantly outperforms (𝑡 > 1.64) a benchmark. From 

the table, it appears that the proposed model outperforms the cb-avg model for only around 29% of the stocks 

with no statistically significant result, while the benchmark outperforms our model by around 71%, and only 

13% of the stocks are statistically significant. Consistent with the result from Figure 1, the benchmark delivers 

superior overall performance. Note, however, that these small proportions of significant results suggest that 

more data might be needed. 

 

 

 

 

 

             Table 1: Distribution of the CW statistics 

Benchmark 𝑡 ≤ −1.64 −1.64 < 𝑡

≤ 0 

0 < 𝑡 ≤ 1.64 𝑡 > 1.64 

cb-avg 17 

(13.08%) 

75 

(57.69%) 

38 

(29.23%) 

0 

(0.00%) 

 

Next, the economic performance is evaluated. The proposed model faces a sizeable utility loss 

against the cb-avg model at -2.49% per annum. This result is expected since the benchmark model provides 

better overall prediction accuracy in both the time dimension (MCSSED) and the stock dimension (CW 

statistics).  
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4.2 Discussion 

To explain why our model only performed better in 2009, we performed a detailed analysis by 

splitting the predictions into six subgroups. Each subgroup consists of the predictions of every stock when 

the previous values of the excess returns of the corresponding stock are less than or equal to -10%, from -

10% to -5%, from -5% to 0%, from 0% to 5%, from 5% to 10%, and greater than 10%, respectively. Figure 

2 shows the comparison of the average predictions from both models in each subgroup. It appears that our 

model tends to predict larger excess returns in magnitude, as it tends to generate lower (higher) predictions 

after having observed negative (positive) excess returns. This implies that our model’s predictions are more 

sensitive to data than the predictions from the benchmark. On the one hand, our model might predict less 

accurately when there are consecutive small returns. On the other hand, our model seems to be better at 

predicting a series of extreme value excess returns that exhibit a consistent directional trend. This can be 

confirmed from Figure 3, which shows the alternative MCSSED, which cumulates the sum squared error 

differences of the months in which there are at most a certain number of stocks exhibiting extreme value 

excess returns (±10%) in that month and the previous month with a consistent direction. It appears that the 

more stocks showing consistent directional extreme returns, the better our model performs, while the fewer 

stocks showing the behavior, the worse the model performs. Since months with a relatively large number of 

stocks exhibiting the said behavior only concentrate in 2009, this explains why our model performed better 

during 2009 but worse during the other periods. 

 

 
Figure 2: The average predictions from both models in each subgroup 
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Figure 3: The alternative MCSSED 

 

Next, Figure 4 displays the averaged break rates of type-1 parameters, which are equal to the 

regression coefficient of the aggregate dividend-price ratio (dp) predictor, for each estimation date. The bluer 

the color, the higher the chance of having a break on that corresponding date, while the lighter the color, the 

lesser the chance of having a break. The y-axis is the estimation date, and the x-axis is the date of the 

corresponding break probabilities. The model is deemed to detect a break on a certain date if it assigns a 

noticeable break probability on that date. Thus, a long-blue-vertical stripe indicates that a detected break on 

a certain date is supported by subsequent data, while an isolated blue dot or short-lived stripe indicates that 

the detected break is not supported by subsequent data. A break on each date 𝑡 can be detected for the first 

time when it is included in the estimation period. Those dates correspond to the ones on the leftmost edge of 

the upper black triangle (diagonal line). The figure shows that breaks are typically quickly detected once the 

dates are included in the estimation sample, as there are many dark blue colors appearing close to the diagonal 

line. However, many of these breaks seem quite short-lived, indicating that they are false alarms. Such 

behavior may lead to predictions that are too sensitive to new data points, which can explain our model's 

overall underperformance. Nevertheless, such a quick detection can be very useful at the start of a crisis when 

breaks are expected to happen to many parameters. This observation supports our analysis above. Similar 

results are found for the other parameter types, except for type-f parameters, where no break is noticeable 

(Bumrungrat, 2024). 
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Figure 4: The smoothed break probabilities of type-1 parameters 

 

While Smith and Timmermann (2021) force all the parameters to break simultaneously, we relax 

their assumption of common breaks and allow for partial breaks. The benefit of our relaxation over the model 

of Smith and Timmermann (2021) is faster break detection, which can be very useful at the start of a crisis. 

However, it causes an overfitting problem and leads to predictions that are overly sensitive to new data points, 

and hence lowers prediction accuracy. Since crises do not happen frequently, our model provides poorer 

performance over the full-sample period. One possible way to further improve the model is to use more data 

to fit the model. However, the current estimation method is computationally costly, making it expensive to 

use more data. A balance between our model and the model of Smith and Timmermann (2021) may improve 

the model’s performance. One may assume no breaks for certain types of model parameters or assume that a 

subset of parameter types breaks together. We leave this for future work.  

 

5.  Conclusion 

In this study, we propose the novel panel break model, addressing the limitations of the common 

break model of Smith and Timmermann (2021). Our model allows each type of parameter to break separately 

while still being able to utilize information from all stocks to quickly detect breaks.  

We evaluate the model’s performance by performing expanding-window out-of-sample predictions 

on the top 100 largest US stocks by market capitalization during the period from January 2002 to December 

2021. The results show that our model improves the prediction results when stocks experience a series of 

extreme returns. This improved performance was clearly noticeable during the 2009 crisis. However, for the 

other periods, a large number of the detected breaks are quite short-lived and can be deemed false alarms. 

This signals overfitting. To further improve the model, we suggest using more data and adding some 

restrictions to the model, such as assuming no breaks for certain model parameter types or allowing common 

breaks for a subset of parameter types. 
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