A PHP Error was encountered

Severity: Notice

Message: Undefined index: middle_name

Filename: controllers/Main.php

Line Number: 333

Backtrace:

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 333
Function: _error_handler

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 269
Function: gen_citation_apa

File: C:\xampp\htdocs\rsuconference\2022\index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Undefined index: middle_name

Filename: controllers/Main.php

Line Number: 333

Backtrace:

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 333
Function: _error_handler

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 269
Function: gen_citation_apa

File: C:\xampp\htdocs\rsuconference\2022\index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Undefined index: middle_name

Filename: controllers/Main.php

Line Number: 333

Backtrace:

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 333
Function: _error_handler

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 269
Function: gen_citation_apa

File: C:\xampp\htdocs\rsuconference\2022\index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Undefined index: middle_name

Filename: controllers/Main.php

Line Number: 333

Backtrace:

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 333
Function: _error_handler

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 269
Function: gen_citation_apa

File: C:\xampp\htdocs\rsuconference\2022\index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Undefined index: middle_name

Filename: controllers/Main.php

Line Number: 333

Backtrace:

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 333
Function: _error_handler

File: C:\xampp\htdocs\rsuconference\2022\application\controllers\Main.php
Line: 269
Function: gen_citation_apa

File: C:\xampp\htdocs\rsuconference\2022\index.php
Line: 315
Function: require_once

RSU Conference 2022

RSUSCI-2022 & RSUSOC-2022

IN22-098 Sparse: A Reservation and Computer Vision-Based Room Occupancy System for Malayan Colleges Laguna's Center for Learning and Information Resources

Presenter: Job Joaquin Lipat
College of Computer and Information Science, Malayan Colleges Laguna, Malayan Colleges Laguna

Abstract

The Center for Learning and Information Resources (CLIR) or the library in Malayan Colleges Laguna (MCL) faces some problems regarding its usage. First, students get frustrated when they go to the CLIR just to find out that there are no more available seats. Second, its operations are affected by safety protocols amidst the pandemic. To help alleviate these problems, the researchers proposed a system called Sparse. It is a computer vision-based room occupancy detection and seat reservation system. To develop the system, the researchers performed three key activities. First, the researchers trained and benchmarked three object-detection models, namely the Faster R-CNN, RetinaNet, and SSD models. These models were tested using the SCUT Head dataset. The metrics used for comparison were the models’ average processing time and root mean squared error. Second, the researchers collaborated with the visitor and librarian resource persons to identify the necessary features for the system. Lastly, the researchers surveyed 20 prospective users, including MCL students, librarians, and faculty members, to evaluate the usefulness of the identified features.

From these activities, the researchers compared the Faster R-CNN (10.321 Pre-trained RMSE, 18.139 Trained RMSE, 0.117s average processing time), RetinaNet (12.660 Pre-trained RMSE, 19.026 Trained RMSE, 0.111s average processing time), and SSD (15.351 Pre-trained RMSE, 21.900 Trained RMSE, 0.018s average processing time). Among them, the Faster R-CNN was selected because it resulted in the least amount of Root Mean Square Error while having an acceptable average processing time. Then, the features for the website that were identified for visitors are the Room Occupancy Chart, Interactive Suggestions, Library Information, and Seat Reservation. For librarians, the features that were identified are the Room Occupancy Information, Report Generation, Summary of Reserved Spots, Change Effective Capacity, Library Information Management, and Account Management, wherein the last three features are only accessible to the head librarian accounts. Third, the results of the survey show that the identified features were useful to users. Additionally, the survey has also gathered suggestions that could be implemented in the future.

Citation format:

Lipat, J. ., Rabano, C. ., Mamauag, M. ., Galang, M. ., & Contreras, J. .. (2022). Sparse: A Reservation and Computer Vision-Based Room Occupancy System for Malayan Colleges Laguna's Center for Learning and Information Resources. Proceeding in RSU International Research Conference, April 30, 2022. Pathum Thani, Thailand.